iRobot 社のお掃除ロボット「ルンバ(Roomba)」は 700 シリーズ以前のモデルでは mini-DIN のインターフェースポートがありシリアル通信にて外部からルンバを操作するためのインタフェース Roomba Open Interface (ROI) が提供されていました.またルンバ 900 シリーズではシリアルポートが micro USB となり USB ケーブル経由で外部コンピュータと簡単につなげて ROI が利用できるようになっていました.
そしてルンバから派生した掃除機能を廃して趣味や教育用をターゲットとした Create ロボットもルンバと共通の ROI で操作可能です.なおかつ Create 向けとして ROI の ROS インタフェースが GitHub で提供されているので この ROI-ROS インタフェースを用いることでシリアルポートの付いているルンバを ROS から操作することが可能となっています.
本シリーズの記事では PC やラズパイから USB ケーブルで 900 シリーズのルンバに接続して ROS からルンバを操縦する方法を紹介します.
記事のシリーズ構成は次のようになる予定です.
ルンバを Ubuntu PC から ROS を使って USB 有線操縦することを目的とした今回の記事におけるハードウェア・ソフトウェア構成は以下のようになっています.
OS などの環境については本記事執筆直近の動作検証では Ubuntu 24.04 と ROS Jazzy (ROS2) の組み合わせで行っていますが,過去に行った検証では Ubuntu 22.04 + ROS Humble の組み合わせでも動作確認しています.
使用コードについては今回のシステム構成において使いやすいように Create Robot のソフトウェア GitHub リポジトリ https://github.com/AutonomyLab/create_robot から
フォーク https://github.com/y-yosuke/create_robot/tree/humble-add-setmode して利用しています.
Ubuntu 24.04 に ROS Jazzy のインストールする手順は下記リンク先の ROS 2 Documentation: Jazzy – Installation Ubuntu (deb packages) を参照して実行してください.
依存パッケージをインストールできるように rosdep をセットアップしておきます.
$ sudo apt install python3-rosdep $ sudo rosdep init $ rosdep update
ビルドのために colcon 関連パッケージをインストールします.
$ sudo apt install python3-colcon-common-extensions
ROS ワークスペースを作成して GitHub からコードをクローンし,インストール・ビルドを実行します.
$ source /opt/ros/jazzy/setup.bash $ mkdir -p ~/roomba_ws/src $ cd ~/roomba_ws/src/ $ git clone -b humble-add-setmode https://github.com/y-yosuke/create_robot.git $ git clone https://github.com/AutonomyLab/libcreate.git $ gnome-text-editor ~/roomba_ws/src/libcreate/include/create/packet.h $ cd ~/roomba_ws/ $ rosdep install -r -y --from-paths src --ignore-src $ colcon build $ source ~/roomba_ws/install/setup.bash
上記手順の libcreate を git clone したあとに下記コマンドを追加しています.
$ gnome-text-editor ~/roomba_ws/src/libcreate/include/create/packet.h
本コマンドを実行するとテキストエディタが起動して修正が必要なファイル packet.h が開かれます.
下のように packet.h の 35行目 に #include <string>
を挿入してファイルを保存してからテキストエディタを閉じます.
libcreate / include / create / packet.h
#define CREATE_PACKET_H #include <mutex> #include <string> namespace create { class Packet {
これはビルドするのに必要な下記リンク先の修正のプルリクエストがまだ反映されていないための修正作業です.今後このプルリクエストが libcreate の master ブランチにマージされた後は不要となります.
Ubuntu PC のソフトウェアのセットアップが終了したら Ubuntu PC にルンバとゲームパッドもしくは 3D マウスを接続します.
ルンバ 900 シリーズの micro USB ソケットは上面右側にある細長いカバーを外すとあります.このカバーは工具なしで手で外すことができます.
ルンバが接続されているシリアルポートの権限を変更してユーザからもアクセス可能な状態にします.
$ sudo chmod a+rw /dev/ttyACM0 $ sudo usermod -a -G dialout $USER
ターミナル 1
$ source ~/roomba_ws/install/setup.bash $ ros2 launch create_bringup create_1.launch
launch 後,正常に Ubuntu PC からルンバに通信が確立されているとルンバ側で短いビープ音が鳴ります.
ターミナル 2
ルンバへの速度指令を出すためのゲームパッドもしくは 3D マウスのノードを実行するためにターミナルをもう1つ開いて実行します.
< Xbox360 互換ゲームパッド使用の場合 >
$ source ~/roomba_ws/install/setup.bash $ ros2 launch create_bringup joy_teleop.launch
< 3Dマウス( 3DConnexion SpaceMouse Wireless )使用の場合 >
$ source ~/roomba_ws/install/setup.bash $ ros2 launch create_bringup spacenav_teleop.launch
spacenav_teleop.launch においてはデッドマン・スイッチの設定はないので SpaceMouse の前後・ヨー軸のねじり入力がそのままルンバへの速度指令として出力されます.
次の動画はゲームパットを用いてルンバを動かしたときのものです.デッドマン・スイッチの L1 を押しながらアナログスティック R を操作することでルンバへの速度指令が出力されている様子が見て取れるかと思います.
ルンバ操作を終了するときは各ターミナルで実行しているプロセスを Ctrl+C で終了してください.
今回の記事はここまでです.
本シリーズ次回の記事ではルンバが動きやすいようにバッテリー駆動のラズベリーパイをルンバと USB 接続し,カメラも併せてラズパイに接続することで,ルンバ 900 シリーズを WiFi を介した ROS 遠隔操作ロボットのようにしてみる様子を紹介する予定です.
前回 「Gazebo/MoveIt のための 3D モデリング(3)基本形状編 – その2」 では洗濯機の基本的な形状で構成されるサーフェスのモデリングを行いました.
今回は発展的な内容として滑らかなサーフェスのモデリングに向けた予備知識的な内容の説明をします.
ロボットモデルはシミュレータ上で使うために結局メッシュ(ポリゴン)にしてしまうのでシミュレーションなどに利用する 3D モデル作成においては 「滑らかなサーフェス」 である必要性は高くありません.
しかし,モデリング対象の中には滑らかなサーフェスになるように設計されている製品もあります.そのような製品のモデリングの際に対象物の形状が円弧のように見えるけど何か違うので合わなくて悩むようなことがあります.そういったときに円弧などの基本的な形状以外のサーフェスもあることを知っていると,それは厳密には合わないものとして割り切って近似的に円弧などのシンプルな形状としてモデリングするということも適切に判断できると思います.
このようなことから,今回の記事はそういった 「滑らかなサーフェス」 について 「知る」 ことを目的としています.
「滑らか」 とはは何であるかというと,曲線やサーフェスの位置や接線方向,曲率,曲率の変化率に連続性があるということです.
上の図は 90° の角度をもつ直線間を曲線で接続させたときの連続性の違いによる曲率(黄色カーブ)のグラフ(CurvatureGraph)を表した画像をアニメーション化したものです.
(クリックで拡大)
各接続条件は次のリストのように連続性の条件が加わってゆくように考えてください.
「R形状」は「接線連続」のうち円弧で接続できる特殊なケースと捉えることができます.
上の図の接続連続性の異なる曲線を 「押し出し」 してサーフェスを作成してレンダリング表示にしたものが次の図です.
影の付き方が曲率や曲率変化率などの連続条件を加えてゆくと段々と滑らかになるのが見て取れるでしょうか?
サーフェスの曲率を解析して色で表した(CurvatureAnalysis)ものが次の図で,青が曲率が小さく,赤が曲率が大きいコンタ図になっています.
連続性の条件が加わるにつれて接続部周辺の曲率の変化が緩やかになっています.
また,サーフェスの滑らかさを評価するために 「ゼブラ(縞模様・Zebra)」 解析もわかりやすいのでよく利用します.
ゼブラ表示によりサーフェスの連続性がより強調されます.縞模様の通り方の滑らかさがサーフェスの接続性の滑らかさを表しています.サーフェスが滑らかに接続しているかどうかを評価したり,接続を滑らかに修正する際に役立ちます.
本シリーズの記事のモデリング対象として作成した洗濯機モデルの曲率とゼブラを表示したものが次の2つの図です.モデル全体で解析すると解析用のメッシュを細かく出来なくなるので,実際には接続性を評価する面に限って解析用メッシュをなるべく細かくして解析をするようにしています.
実際に滑らかなサーフェスをモデリングする場合は,サーフェスが CAD やサーフェスモデラ内部でどのように表現されているかを理解しているとより意図したものに近いサーフェスを作成できるように思います.
Rhinoceros や一般的な CAD などでは曲線やサーフェスは NURBS (Non-Uniform Rational B-Spline/非一様有理Bスプライン) という数学的モデルで表現されています.
NURBS 以外にもサーフェスの 3D 表現モデルとして SubD (Subdivision/細分割曲面) もあります. SubD はコンピュータグラフィックス系の 3D モデリングソフトウェアで利用されていますが,機構設計分野ではあまり使われていませんので本シリーズの記事の対象としません.
NURBS で表現される曲線やサーフェスが何で構成されているかは大まかに述べますと 「制御点」 と 「次数」 です.
上の図は前項目で 90° の角度をもつ直線間を連続性の異なる接続をした曲線がそれぞれどのような 「制御点」 と 「次数」 で表現されているかを示した図をアニメーション化したものです.
NURBS カーブにおいてはその接続における連続性は次のリストにある各数の「制御点」により構成されています.
「次数(degree)」 は大きな数字になるほど曲線が滑らかになります.
上の図は 90° の角度をもつ直線間を接続した 「制御点:8 次数7 の曲線(曲率変化率連続)」 をあえて 「リビルド(Rebuild)」 して 「制御点:8 次数: 3 の曲線」 にして両端点の曲率を接続先の直線に 「マッチング(Match)」 した曲線の曲率の比較です.同じ制御点数でも次数が低いと曲線内で曲率の変化率の連続性が保てなくなってしまいます.
曲線に設定できる 「次数の最大値」 は 「制御点数 – 1」 です.
両端を曲率連続にするための 「制御点が6個」 の曲線の場合は 「次数の最大値は5次」,両端を曲率変化率連続にするための 「制御点が8個」 の場合は設定できる 「次数の最大値は7次」 になります.
制御点が多いとより細かく曲線やサーフェスの形状の制御が出来ますが,編集が大変だったり,データサイズが大きくなってしまうので,最小の制御点と適切な次数で表現したい形状や滑らかさを規定できるのがベストです.
接続条件は曲線の両端で同じである必要はないので,例えば片方の端は 「位置連続」 にして,もう片方の端は 「曲率変化率連続」 にするということも可能です.この場合の必要最小限の制御点は 「位置連続側: 1点」 と 「曲率変化率連続側: 4点」 と合わせて 「5点」 は必要になります.制御点を 「5点」 とした場合の次数の最大値を採って 「4次」 とするのが良いでしょう.
制御点が少なくて意図する形状が得られないようでしたら適宜制御点を多くして,次数もそれに合わせて大きくすると良いですが,次数の方は最大でも 「7次」 で十分なように筆者は考えています.
これまで曲線を例に 「制御点」 と 「次数」 について説明してきましたが,サーフェスは曲線の「制御点」と「次数」を2方向に拡張したものです.
サーフェスは 「U方向」 と 「V方向」 の2方向がある 「四角い布」 をベースに,それを伸縮・曲げを行ったり,トリムしてその一部を使ったりするイメージとして捉えることができます.
円錐体のような三角形のサーフェスもありますが 「四角い布」 の特殊例と捉えることができ,同様にUV方向それぞれの要素があります.
次の図は本シリーズでモデリング対象とするために作成した洗濯機モデルのボディの角部のサーフェスの制御点と曲率のグラフを表示したものです.四方にある接続先のサーフェスとそれぞれ(なるべく)曲率変化率まで連続するように作成しました.そのため次数を 7次 とし,制御点を U方向に 15点,V方向に 8点 を持つサーフェスとしました.
曲線の連続性と同じように,サーフェスの連続性も各辺毎に作成時設定できるサーフェスもありますし,マッチングの際に異なる設定で各辺で行えば可能ですが,四辺の接続先と矛盾がないようにしないと隙間のないサーフェスにならない可能性もある点が曲線に比べて難しいところです.
さて,ロボットシミュレータのための 3D モデリングにおいてはどれほど滑らかなサーフェスを作成したら良いのでしょうか?
本記事冒頭で述べたように,ロボットモデルはシミュレータ上で使うために結局メッシュ(ポリゴン)にしてしまうのでシミュレーションなどに利用する 3D モデル作成においては 「滑らかなサーフェス」 である必要性は高くありません.
曲率連続や曲率変化率連続のサーフェスでモデリングしてメッシュ化してもそのような連続性に近い状態を維持しようとするとメッシュが細かくなりデータが重くなります.ただ,そのロボットシミュレーションをデモンストレーションやプレゼンテーションで綺麗に見せたく,少しメッシュデータが重くても良いような場合はなるべく滑らかなサーフェスをモデリングすることもあるように思います.
また,メッシュのデータ量の他にモデル作成の手間も考えておくべきでしょう.
下のリストにサーフェスの連続性の違いをまとめました.技術的なロボットシミュレーションが目的であれば 接線連続 までとしてモデリング時間を省くのも1つの方法です.大きな面はメッシュで形状が潰れてしまわないので 曲率連続 や 曲率変化率連続 まで考慮したモデルとして,小さな面はメッシュ形状に埋もれてしまうので R形状 や 接線連続 としてメリハリをつけるのも良いでしょう.
Rhinoceros では「曲率連続」までは標準の機能として普通に利用できるのでロボットシミュレータのための 3D モデリングでも用いるのはそんなに手間のかかることではないように思います.
今回の記事はここまでです.
大体どのような滑らかさのサーフェスの種類があって,CAD やサーフェスモデラでそれを作成するために必要な条件や作成の手間のイメージが伝わっていると良いのですが.
本シリーズ次回の記事は
「Gazebo/MoveIt のための 3D モデリング(6)滑らかなサーフェス – 作成編」
を予定しています.
前回 「Gazebo/MoveIt のための 3D モデリング(3)基本形状編 – その1」 で Box 形状や球面で洗濯機の大きな面のモデリングを行いました.
今回はその続きで,洗濯機の背面や底部のモデリングを行います.
ボディ背面の突出形状部の最後部から 40mm の幅がありますので,洗濯機の主要形状部をその分トリムします.(前回 Box 形状の Scale1D を前後方向に行わずにガムボール移動などで World 座標系で X の正方向に 40mm 移動した場合はこの手順は不要)
洗濯機の側面視で最背部から垂直な直線を描画して,前方向に 40mm 移動させ,この直線を使ってボディをトリム(Trim)します.
Perspective ビューでトリムされたボディのエッジ分析(ShowEdges)をすると次の左の図のようになります.
このような開口部エッジが同一平面内にあって閉曲線になっている場合は平面で塞ぐ 「キャップ(Cap)」 を実行できます.
次は背部に突出している形状を作成します.
背部の台形状の輪郭を描画します.上面視(Top ビュー)で座標 (-320,0) から水平の直線(Line)を後部に向かって描画して,その直線からオフセット(Offset)で オプション Both(B) で両サイドへのオフセット線をオフセット量 260[mm] = 520mm/2 で描画します.メインボディ最後部のエッジと 260mm オフセットした両直線の交点を中心に回転(Rotate)で 45°,-45° を指定して回転させて上面図画像の輪郭に合うことを確認します.
また直線(Line)を座標 (-360,0) から「両方向(B)」を指定して洗濯機の幅方向に描画します.
描画した3つの直線の台形での不要部分を互いにトリムします.
Perspective ビューに移って台形の開いている部分を直線で接続して結合(Join)して曲線を閉じます.閉じた曲線を洗濯機の高さ方向(Z方向)に +90mm ガムボールで移動させます.
背面部の基礎となる 3D 形状をソリッドの「垂直に押し出し」で作成します.とりあえず上面高さまで押し出しします.
洗濯機の側面視(Back ビュー)にて洗濯機背部形状の上端に相当する斜めの直線を描画して先程「押し出し」したソリッドを トリム(Trim) して キャップ(Cap) で閉じます.
三面図から読み取れる形状としてはここまでなのですが,洗濯機背部は角部や隅部に 「R形状」 や 「フィレット」 と言われる形状がつけられていることが多いです.
今回は三面図から 「R形状」 の寸法は読み取れないので,それを想像して寸法を決めて 「ロフトサーフェス(Loft)」 で作成します.
ロフトサーフェスは曲線と曲線の間にサーフェスを作ります.ロフトサーフェスの基となる曲線を 「フィレット(Fillet)」 で描画します.
フィレットの半径は最後部の平面上の方に 40mm メインボディとつながる平面上の方に 80mm のフィレットをかけるとバランスの良さそうなロフトサーフェスになるかと思います.
洗濯機背部上方のコーナー部にロフトでフィレットサーフェスが作成できたら ミラー(Mirror) でX軸対称に反転コピーします.そしてミラーリングして左右2つになったフィレットで洗濯機背部のソリッドモデルを トリム(Trim) します.
2つのフィレットとそれらでトリムされた背部ポリサーフェスを 結合(Join) すると1つのソリッド(閉じたポリサーフェス)になります.
洗濯機のメインのボディと背部の2つのソリッドモデルは互いに接し合っているので2つのソリッドの 「和の演算(BooleanUnion)」 を行って1つのソリッドモデルにします.
1つのソリッドになるので,くどいようですが ShowEdges で 「閉じたポリサーフェス(=ソリッド)」 であることを都度確認すると良いでしょう.
Gazebo や MoveIt のモデルとしては洗濯機底部はロボットとインタラクションすることはあまりないと思いますので大体の雰囲気をモデリングできれば十分です.
洗濯機の足部は三面図だけではなくカタログ画像からも少し形状が分かるので三面図と併せて参考にしてモデリングします.
カタログ画像や3面図から,足部はテーパのかかった円錐台形状であろうと思われます.
側面視や前面視からそれぞれの足の中心座標を推定し,下面と上面の直径はそれぞれ 50[mm] と 54[mm] ぐらいと当たりをつけて円を描画してロフトとキャップを組み合わせてソリッドモデルを作成します.
洗濯機底部の足以外のサーフェスのモデリングの大まかな様子は次の GIF アニメーションのような感じです.モデリングの履歴(ヒストリー)を使わないモデリングなので作成手順はやり易い順番で大丈夫です.またサーフェスの作成方法も1通りしかないのではなく,例えば 「ロフト (Loft)」 でフィレット形状を作成する代わりに 「サーフェス > フィレット(FilletSrf)」 や 「エッジをフィレット(FilletEdge)」 ,「回転(Revolve)」 を使ったりすることもできます.
これまで取り上げていない機能で利用したのは 「曲線を押し出し(ExtrudeCrv)」 と 「円柱(Cylinder)」 の機能です.
今回は洗濯機ボディの背部や底部のモデリング方法を紹介して,次のモデルとなり本記事のゴールに到着しました.
基本形状編はひとまず今回の記事までです.
本シリーズ次回の記事は 「Gazebo/MoveIt のための 3D モデリング(5) 滑らかなサーフェス – 知識編」 を予定しています.
ROS(ロス/Robot Operating System)の学習は実際にロボットがなくてもロボットのシミュレータが入手できるのでネットワークにつながるパソコンが1台あればできますので結構自習に向いています.この記事では ROS の学習を始める,進めるにあたり必要な情報がある Web へのリンクを中心に紹介します.
大まかに言うと次のインストールを行えば ROS の学習をスタートすることができます.
ROS と Ubuntu Linux のバージョンは後述する ROS 学習のチュートリアルが現時点では ROS Kinetic というバージョンを基本としているので下記の組み合わせをお勧めします.
ROS Melodic は ROS Kinetic と基本的な操作のほとんどは変わらないので ROS Kinetic で学習してから ROS Melodic に移行しても難なく可能です.
パソコンはどのようなものを使えば良いのか?については下記記事を参考にしてください.
最新高性能パソコンよりも数年型落ちや廉価の機種のほうが Ubuntu Linux をインストールしやすい傾向にあるように思います.
下記リンク先に各 ROS のバージョンにおけるインストール手順が書かれています.
また,Ubuntu のバージョンと ROS のバージョンには1対1の対応関係があるので組み合わせを気をつける必要があります.
各チュートリアルを進めるとそれらの中で ROS シミュレータなどのインストールも行います.
ROS の入門には TORK MoveIt チュートリアルをお薦めします.MoveIt は ROS のマニピュレーションロボット動作計画ソフトウェアです.このチュートリアルでは数種のロボットの ROS シミュレータのインストールや基本的な操作,プログラムでのロボット操作を学習することができます.TORK MoveIt チュートリアルではプログラミング言語に Python を用いていますが,プログラミングの経験がほとんどない人にもプログラムによるロボット操作の体験と学習ができるように構成しています.
ROS を初めて使う方に TORK MoveIt チュートリアルを学習したときのレポートも下記の記事に書いてもらっています.学習過程でいろいろと疑問をもった点などの体験を書いてもらいましたので参考にしてみてください.
より発展的な ROS プログラミングを学習したい場合は ROS-Industrial トレーニングを行ってみるのも良いでしょう.この教材で取り上げられているプログラミング言語は主に C++ と Python です.C++ によるロボット制御や画像処理,3D ポイントクラウド処理などとそれらの組み合わせのプログラムの学習ができます.
ROS Discourse やチュートリアル,パッケージの GitHub Issues に質問を投稿してみてください.
1台のパソコンだけ,シミュレータだけでなく入門的な実機マニピュレータを利用してみたいと思った方は入門的なマニピュレーションロボット2例の導入検証を行った記事を参考にしてみてください.