タグアーカイブ robot

著者:yamamoto.yosuke

ルンバ 900 シリーズを ROS で遠隔操作ロボットに – 遠隔操縦編

本シリーズ前回の記事では 900 シリーズのルンバと Ubuntu PC を USB ケーブルで 接続して ROS からルンバを有線操縦する方法を紹介しました.

今回の記事ではルンバが独立して動きやすいようにバッテリー駆動のラズベリーパイ(ラズパイ・Raspberry Pi)をルンバと USB 接続し,併せて USB カメラもそのラズパイに接続することで,ルンバ 900 シリーズを WiFi を介した ROS 遠隔操作ロボットのようにしてみる様子を紹介します.

実行環境

前回の記事においてルンバを Ubuntu PC から ROS を使って USB 有線操縦することを目的としたハードウェア・ソフトウェア構成は以下のようになっていました.

  • ルンバ 961(→今回はラズパイに接続)
  • micro USB ケーブル(→今回はラズパイとルンバを接続するために使用)
  • PC: Dell Inspiron 13 5390
  • OS 等: Ubuntu 24.04 + ROS Jazzy (ROS2)
  • コントローラ(どちらか1つ)
    • Xbox360 互換ゲームパッド( 8bitDo SN30 pro – USB 有線 )
    • 3Dマウス( 3DConnexion SpaceMouse Wireless を有線で使用 )
  • 使用コード: https://github.com/y-yosuke/create_robot/tree/humble-add-setmode

今回はこれらのハードウェアに加えて下記のラズパイとその周辺機器のセットをルンバに接続したシステムも使用します.

  • Raspberry Pi 4B
    • OS をインストールする microSD カードは最大読込 100 MB/s 以上のスペックを推奨
  • OS 等: Ubuntu 24.04 + ROS Jazzy (ROS2)
  • USB 充電バッテリー( Anker Power Bank (10000mAh, 30W) )
  • USB カメラ( Buffalo WEBカメラ BSW505MBK )
  • 使用コード: https://github.com/y-yosuke/create_robot/tree/humble-add-setmode

OS などの環境については本記事執筆直近の動作検証では Ubuntu 24.04 と ROS Jazzy (ROS2) の組み合わせで行っていますが,過去に行った検証では Ubuntu 22.04 と ROS Humble の組み合わせでも動作確認しています.

使用コードについては前回の記事と同様に今回のシステム構成において使いやすいように Create Robot のソフトウェア GitHub リポジトリ https://github.com/AutonomyLab/create_robot からフォーク https://github.com/y-yosuke/create_robot/tree/humble-add-setmode して利用しています.

インストール・ビルド

今回追加した Raspberry Pi 4B に Ubuntu 24.04 + ROS Jazzy と必要なソフトウェアをインストール・ビルドします.

Raspeberry Pi への Ubuntu 24.04.1 のインストール

Ubuntu 24.04 ディスクイメージを microSD カードに書き込みます.
Install Ubuntu on a Raspberry Pi を参照して microSD カードに Ubuntu 24.04.1 以降ののインストーライメージを書き込みます.

Raspeberry Pi へのソフトウェアのインストール・ビルド

Raspberry Pi への ROS Jazzy と必要なパッケージのインストール・ビルドについては基本的に前回の記事のインストール手順 ルンバ 900 シリーズを ROS で遠隔操作ロボットに – USB 有線操縦編 : インストール・ビルド と同じですのでそちらを参照して進めてください.

1ヶ所 libcreate/include/create/packet.h を編集するときに gnome-text-editor がコマンドラインから起動できないことがありました.

$ gnome-text-editor ~/roomba_ws/src/libcreate/include/create/packet.h

その場合は本記事最後にあるトラブルシューティングの項目を参考に nanogedit その他お好みの gnome-text-editor 以外のテキストエディタを使用してください.

Ubuntu 24.04.1 インストール時点では ssh サーバが入っていないのでインストールして「設定(Settings)」で ssh 接続を有効化してください.

$ sudo apt update
$ sudo apt install openssh-server

今回使用するパッケージで依存関係記述から漏れていたパッケージ v4l2_camera をインストールします.

$ sudo apt install ros-jazzy-v4l2-camera

ルンバの遠隔操縦

ハードウェアのセットアップ

Raspberry Pi にルンバ,USB カメラ,バッテリーを接続します.Ubuntu PC 側にはゲームコントローラなどを接続します.

Raspberry Pi 4B + USB カメラ + バッテリー <==(USBケーブル)==> ルンバ 900 シリーズ
 ↑ /// ( WiFi ネットワーク ) /// ↓
Ubuntu PC + ゲームコントローラなど

次の画像はルンバ側のハードウェアを接続した様子です.

次の画像は Ubuntu PC 側のハードウェアを接続した様子です.この画像内の PC ディスプレイには後述する「ソフトウェアの実行」を行ったときのルンバに設置した USB カメラからの映像が映し出されています.

Raspberry Pi への ssh 接続とデバイスの権限設定

Ubuntu PC のターミナルからルンバと USB 接続されている Raspberry Pi に ssh 接続します.

下記の例では robotuser-rp4b というホスト名をつけた Raspberry Pi に robotuser というユーザ名で接続しています.ホスト名やユーザ名,接続時のパスワードは適宜読者の環境に沿ったもので実行してください.

ssh 接続ができたらルンバとのシリアル通信ポートの権限を chmod で変更します.

Ubuntu PC: Raspberry Pi に ssh 接続するターミナル

$ ssh robotuser@robotuser-rp4b.local
robotuser@robotuser-rp4b:~$ sudo chmod 777 /dev/ttyACM0

このターミナルの ssh は接続したままににします.

ソフトウェアの実行

Raspberry Pi に ssh 接続したターミナルで次のコマンドを実行して create_1_camera.launch
を起動します.

Ubuntu PC: Raspberry Pi に ssh 接続したターミナル

robotuser@robotuser-rp4b:~$ source ~/roomba_ws/install/setup.bash
robotuser@robotuser-rp4b:~$ ros2 launch create_bringup create_1_camera.launch
注)上記ボックス内を横スクロールでコマンド全文表示

次にルンバを遠隔操作する側の Ubuntu PC 上の2つのターミナルで次のコマンドを実行してルンバに接続した Raspberry Pi のカメラ映像を表示しながらゲームパッドノードからルンバへの速度指令のトピックを発行します.

Ubuntu PC: ターミナル 1(カメラ映像の表示)

$ source ~/roomba_ws/install/setup.bash
$ ros2 run rqt_image_view rqt_image_view 

画像トピック名に image_raw を選択するとウィンドウ内に映像が表示されます.

Ubuntu PC: ターミナル 2(速度指令発行ノードの実行)

ルンバへの速度指令を出すためのゲームパッドもしくは 3D マウスのノードを実行するためにターミナルをもう1つ開いて実行します.

< Xbox360 互換ゲームパッド使用の場合 >

Xbox360 互換ゲームパッドを用いてルンバに対する速度指令を出すノードを実行するのに joy_teleop.launch を起動します.

$ source ~/roomba_ws/install/setup.bash
$ ros2 launch create_bringup joy_teleop.launch
注)デッドマンスイッチ(現設定 L1 ボタン) を押しながらアナログスティック R を操作

< 3Dマウス( 3DConnexion SpaceMouse Wireless )使用の場合 >

3DConnexion SpaceMouse を用いてルンバに対する速度指令を出すノードを実行するのに spacenav_telelop.launch を起動します.

$ source ~/roomba_ws/install/setup.bash
$ ros2 launch create_bringup spacenav_teleop.launch 

次の動画ではルンバとラズパイのシステムが外部接続ケーブルが無く独立しており,Ubuntu PC 側のゲームパッドで操縦されルンバ上の USB カメラの映像も取得できている様子が見て取れると思います.

この動画内では撮影の都合で Ubuntu PC で操作を行っている操縦者の有視界内にルンバもありますが,Ubuntu PC とルンバは WiFi ネットワークを介してつながっているので例えば別の部屋などの視界外からもルンバ上の USB カメラからの映像や他の ROS トピックを参照しながら遠隔操縦できそうであることは想像できるのではないでしょうか.

ルンバ操作を終了するときは各ターミナルで実行しているプロセスを Ctrl+C で終了してください.


付録-A. 掃除中ルンバの ROS トピック発信

ルンバから派生した趣味や教育用をターゲットとした Create Robot は掃除機能を廃してしまっていますが今回使用しているのはお掃除ロボットのルンバそのものです.

ルンバが普通に掃除している間もその状態を Roomba Open Interface (ROI) を通じて取得できるのが ROI のパッシブモードです.

create_1_camera.launch でも launch オプションで control_mode:=passive を指定すると,ROI のパッシブモードでルンバを操作せずに通信してその状態を ROS トピックとして発行します.

Ubuntu PC: Raspberry Pi に ssh 接続したターミナル

robotuser@robotuser-rp4b:~$ source ~/roomba_ws/install/setup.bash
robotuser@robotuser-rp4b:~$ ros2 launch create_bringup create_1_camera.launch control_mode:=passive
注)上記ボックス内を横スクロールでコマンド全文表示

パッシブモードを実行中にルンバの CLEAN ボタンを押すか iRobot アプリから開始することで掃除が始まります.

create_1_camera.launch パッシブモード時に発行される ROS トピックのリスト出力は次の様になっています.

Ubuntu PC: ターミナル 1

$ source ~/roomba_ws/install/setup.bash
$ ros2 topic list
/battery/capacity
/battery/charge
/battery/charge_ratio
/battery/charging_state
/battery/current
/battery/temperature
/battery/voltage
/bumper
/camera_info
/check_led
/clean_button
/cliff
/cmd_vel
/day_button
/debris_led
/define_song
/diagnostics
/dock
/dock_button
/dock_led
/hour_button
/image_raw
/ir_omni
/joint_states
/main_brush_motor
/minute_button
/mode
/odom
/parameter_events
/play_song
/power_led
/robot_description
/rosout
/set_ascii
/side_brush_motor
/spot_button
/spot_led
/tf
/tf_static
/undock
/vacuum_motor
/wheeldrop

付録-B. トラブルシューティング

ターミナルが起動しない場合 → locale の LANG 設定を確認

Ubuntu 24.04.1 でターミナルが起動しなかったのですが,その時は /etc/default/locale の内容を LANG="en_US.UTF-8" に修正したら起動するようになりました.

/etc/default/locale

LANG="en_US.UTF-8"

gnome-text-editor が起動しない → 他のテキストエディタを使用

gnome-text-editor がコマンドラインから起動できない場合は他のテキストエディタ nano や gedit などを使用してください.

1. nano を使う
$ nano ~/roomba_ws/src/libcreate/include/create/packet.h
2. gedit を使う
$ sudo apt update
$ sudo apt install gedit
$ gedit ~/roomba_ws/src/libcreate/include/create/packet.h

今回の記事はここまでです.

著者:yamamoto.yosuke

ルンバ 900 シリーズを ROS で遠隔操作ロボットに – USB 有線操縦編

iRobot 社のお掃除ロボット「ルンバ(Roomba)」は 700 シリーズ以前のモデルでは mini-DIN のインターフェースポートがありシリアル通信にて外部からルンバを操作するためのインタフェース Roomba Open Interface (ROI) が提供されていました.またルンバ 900 シリーズではシリアルポートが micro USB となり USB ケーブル経由で外部コンピュータと簡単につなげて ROI が利用できるようになっていました.

そしてルンバから派生した掃除機能を廃して趣味や教育用をターゲットとした Create ロボットもルンバと共通の ROI で操作可能です.なおかつ Create 向けとして ROI の ROS インタフェースが GitHub で提供されているので この ROI-ROS インタフェースを用いることでシリアルポートの付いているルンバを ROS から操作することが可能となっています.

本シリーズの記事では PC やラズパイから USB ケーブルで 900 シリーズのルンバに接続して ROS からルンバを操縦する方法を紹介します.

記事のシリーズ構成は次のようになる予定です.

  • ルンバを Ubuntu PC から ROS を使って USB 有線操縦する(→本記事)
  • ルンバを Raspberry Pi に接続して ROS を使って WiFi 経由で無線遠隔操作ロボットにする(→次回記事)

実行環境

ルンバを Ubuntu PC から ROS を使って USB 有線操縦することを目的とした今回の記事におけるハードウェア・ソフトウェア構成は以下のようになっています.

  • ルンバ 961
  • micro USB ケーブル
  • PC: Dell Inspiron 13 5390
  • OS 等: Ubuntu 24.04 + ROS Jazzy (ROS2)
  • コントローラ(どちらか1つ)
    • Xbox360 互換ゲームパッド( 8bitDo SN30 pro – USB 有線 )
    • 3Dマウス( 3DConnexion SpaceMouse Wireless を有線で使用 )
  • 使用コード: https://github.com/y-yosuke/create_robot/tree/humble-add-setmode

OS などの環境については本記事執筆直近の動作検証では Ubuntu 24.04 と ROS Jazzy (ROS2) の組み合わせで行っていますが,過去に行った検証では Ubuntu 22.04 + ROS Humble の組み合わせでも動作確認しています.

使用コードについては今回のシステム構成において使いやすいように Create Robot のソフトウェア GitHub リポジトリ https://github.com/AutonomyLab/create_robot から
フォーク https://github.com/y-yosuke/create_robot/tree/humble-add-setmode して利用しています.

インストール・ビルド

Ubuntu 24.04 に ROS Jazzy のインストールする手順は下記リンク先の ROS 2 Documentation: Jazzy – Installation Ubuntu (deb packages) を参照して実行してください.

依存パッケージをインストールできるように rosdep をセットアップしておきます.

$ sudo apt install python3-rosdep
$ sudo rosdep init
$ rosdep update

ビルドのために colcon 関連パッケージをインストールします.

$ sudo apt install python3-colcon-common-extensions

ROS ワークスペースを作成して GitHub からコードをクローンし,インストール・ビルドを実行します.

$ source /opt/ros/jazzy/setup.bash
$ mkdir -p ~/roomba_ws/src
$ cd ~/roomba_ws/src/
$ git clone -b humble-add-setmode https://github.com/y-yosuke/create_robot.git
$ git clone https://github.com/AutonomyLab/libcreate.git
$ gnome-text-editor ~/roomba_ws/src/libcreate/include/create/packet.h
$ cd ~/roomba_ws/
$ rosdep install -r -y --from-paths src --ignore-src
$ colcon build
$ source ~/roomba_ws/install/setup.bash

2024.09.20 追記

上記手順の libcreate を git clone したあとに下記コマンドを追加しています.

$ gnome-text-editor ~/roomba_ws/src/libcreate/include/create/packet.h

本コマンドを実行するとテキストエディタが起動して修正が必要なファイル packet.h が開かれます.

下のように packet.h の 35行目 に #include <string> を挿入してファイルを保存してからテキストエディタを閉じます.

libcreate / include / create / packet.h

#define CREATE_PACKET_H

#include <mutex>
#include <string>

namespace create {
  class Packet {

これはビルドするのに必要な下記リンク先の修正のプルリクエストがまだ反映されていないための修正作業です.今後このプルリクエストが libcreate の master ブランチにマージされた後は不要となります.

ルンバの USB 有線操縦

ハードウェアのセットアップ

Ubuntu PC のソフトウェアのセットアップが終了したら Ubuntu PC にルンバとゲームパッドもしくは 3D マウスを接続します.

Ubuntu PC + ゲームパッド <==(USBケーブル)==> ルンバ 900シリーズ

ルンバ 900 シリーズの micro USB ソケットは上面右側にある細長いカバーを外すとあります.このカバーは工具なしで手で外すことができます.

デバイスの権限設定

ルンバが接続されているシリアルポートの権限を変更してユーザからもアクセス可能な状態にします.

$ sudo chmod a+rw /dev/ttyACM0
$ sudo usermod -a -G dialout $USER

ソフトウェアの実行

ターミナル 1

$ source ~/roomba_ws/install/setup.bash
$ ros2 launch create_bringup create_1.launch

launch 後,正常に Ubuntu PC からルンバに通信が確立されているとルンバ側で短いビープ音が鳴ります.

ターミナル 2

ルンバへの速度指令を出すためのゲームパッドもしくは 3D マウスのノードを実行するためにターミナルをもう1つ開いて実行します.

< Xbox360 互換ゲームパッド使用の場合 >

Xbox360 互換ゲームパッドを用いてルンバに対する速度指令を出すノードを実行するのに joy_teleop.launch を起動します.

$ source ~/roomba_ws/install/setup.bash
$ ros2 launch create_bringup joy_teleop.launch
注)デッドマンスイッチ(現設定 L1 ボタン) を押しながらアナログスティック R を操作

< 3Dマウス( 3DConnexion SpaceMouse Wireless )使用の場合 >

3DConnexion SpaceMouse を用いてルンバに対する速度指令を出すノードを実行するのに spacenav_telelop.launch を起動します.

$ source ~/roomba_ws/install/setup.bash
$ ros2 launch create_bringup spacenav_teleop.launch 

spacenav_teleop.launch においてはデッドマン・スイッチの設定はないので SpaceMouse の前後・ヨー軸のねじり入力がそのままルンバへの速度指令として出力されます.

次の動画はゲームパットを用いてルンバを動かしたときのものです.デッドマン・スイッチの L1 を押しながらアナログスティック R を操作することでルンバへの速度指令が出力されている様子が見て取れるかと思います.

ルンバ操作を終了するときは各ターミナルで実行しているプロセスを Ctrl+C で終了してください.

今回の記事はここまでです.


本シリーズ次回の記事ではルンバが動きやすいようにバッテリー駆動のラズベリーパイをルンバと USB 接続し,カメラも併せてラズパイに接続することで,ルンバ 900 シリーズを WiFi を介した ROS 遠隔操作ロボットのようにしてみる様子を紹介する予定です.

著者:yamamoto.yosuke

SwitchBot を ROS から利用する – データ取得編

本シリーズ前回の記事 SwitchBot を ROS から利用する – コマンド操作編2 では SwitchBot を ROS から利用する switchbot_ros のサンプルのソースコードで扱われていた SwitchBot デバイス以外のものを ROS から操作するために SwitchBot API のコマンドセットを調べて control_switchbot.py に実装する過程について紹介しました.

今回は SwitchBot デバイスのステータスデータの取得と ROS トピックへのパブリッシュを行ってみます.

switchbot_ros の更新・ビルド

前回の記事 SwitchBot を ROS から利用する – コマンド操作編2 を公開した後に GitHub 上の switchbot_ros が更新されて SwitchBot デバイスのステータスデータの取得とパブリッシュを行うソフトウェアソースコードが追加されました.

更新された switchbot_ros を実際に動作させる Ubuntu PC 内の switchbot_ros に適用してビルドします.

今回初めて switchbot_ros を使う場合は前々回の記事 SwitchBot を ROS から利用する – コマンド操作編1switchbot_ros のビルド の項目を参考にワークスペースの作成やクローン・ビルドを実行してください.このように新規にクローンしてきた場合は次の更新作業は不要です.

既に前回の記事の時点の switchbot_ros を含む jsk_3rdparty をクローンして利用している場合は次の手順で更新された GitHub 上の jsk_3rdparty を git でプル(ダウンロード更新)してビルドします.

switchbot_ros を含む jsk_3rdparty の更新とビルド

$ source ~/switchbot_ws/devel/setup.bash
$ cd ~/switchbot_ws/src/jsk_3rdparty
$ git checkout master
$ git pull origin master
$ catkin build
$ source ~/switchbot_ws/devel/setup.bash

利用可能な SwitchBot デバイス名の取得

ターミナル 1 : switchbot_ros の実行

前回記事と同じですがユーザの SwitchBot アカウントで登録されているデバイスの「デバイス名」と「デバイスタイプ」は switchbot.launch を実行すると表示されます.

(下記 launch オプションの YOUR_TOKENYOUR_SECRET をそれぞれユーザアカウントのトークンとシークレットに置き換えて実行)

switchbot.launch 実行入力

$ source ~/switchbot_ws/devel/setup.bash
$ roslaunch switchbot_ros switchbot.launch token:=YOUR_TOKEN secret:=YOUR_SECRET

switchbot.launch 実行出力例

... logging to /home/robotuser/.ros/log/87b6e5c8-c1a2-11ee-bce7-1d89a9d14e1f/roslaunch-robotuser-PC-62866.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://robotuser-PC:40731/

SUMMARY
========

PARAMETERS
 * /rosdistro: noetic
 * /rosversion: 1.16.0
 * /switchbot_ros/secret: (シークレットの上位数桁が表示)...
 * /switchbot_ros/token: (トークンの上位数桁が表示)...

NODES
  /
    switchbot_ros (switchbot_ros/switchbot_ros_server.py)

auto-starting new master
process[master]: started with pid [62874]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to 87b6e5c8-c1a2-11ee-bce7-1d89a9d14e1f
process[rosout-1]: started with pid [62884]
started core service [/rosout]
process[switchbot_ros-2]: started with pid [62891]
[INFO] [1706861436.195243]: Switchbot API Client initialized.
[INFO] [1706861436.199678]: Using SwitchBot API v1.1
[INFO] [1706861436.204957]: Switchbot Device List:
6 Item(s)
deviceName: bot74a, deviceID: (固有のID番号が表示), deviceType: Bot
deviceName: hub2a, deviceID: (固有のID番号が表示), deviceType: Hub 2
deviceName: plugmini7a1, deviceID: (固有のID番号が表示), deviceType: Plug Mini (JP)
deviceName: remote-button10a, deviceID: (固有のID番号が表示), deviceType: Remote
deviceName: tapelight7a1, deviceID: (固有のID番号が表示), deviceType: Strip Light
deviceName: thermo-hygrometer-f7a, deviceID: (固有のID番号が表示), deviceType: Meter

[INFO] [1706861436.208853]: Switchbot Remote List:
2 Item(s)
deviceName: air-conditioner, deviceID: (固有のID番号が表示), remoteType: Air Conditioner
deviceName: pendant-light, deviceID: (固有のID番号が表示), remoteType: DIY Light

[INFO] [1706861436.214168]: Switchbot Scene List:
3 Item(s)
sceneName: turnoff-all-lights, sceneID: (固有のID番号が表示)
sceneName: turnon-all-lights, sceneID: (固有のID番号が表示)
sceneName: turnon-all-lights, sceneID: (固有のID番号が表示)

[INFO] [1706861436.254126]: Ready.

利用可能なデバイス名がコンソール出力されたので一旦 Ctrl-C にて switchbot.launch を終了します.

上記の switchbot.launch 実行出力例にある SwitchBot デバイスのうち取得するステータスがない Remote 以外の次のデバイスタイプは switchbot_ros にてステータスデータを取得することができます.

  • Bot
  • Hub 2
  • Meter
  • Plug Mini (JP)
  • Strip Light

また上記リスト以外のデータ取得 API 提供がされている SwitchBot デバイスについては switchbot_ros のコードに組み込まれていませんが適宜情報をコードに加えれば switchbot_ros からもデータ取得できるようになると思います.

SwitchBot デバイスのステータスデータの取得と確認

実行例として今回は SwitchBot の温湿度計(デバイスタイプ Meter)のステータスデータを取得してパブリッシュされている ROS トピックを表示してみます.先述の switchbot.launch の実行出力例から読み取ると,該当するデバイス名が thermo-hygrometer-f7a となっています.

ステータスデータを取得する場合は switchbot.launch 実行時に次の2つのオプションを追加します.

  • pub_status:=true ステータスを取得・パブリッシュを実行するオプション true/false
  • pub_device_name:=thermo-hygrometer-f7a デバイス名の指定(本例では thermo-hygrometer-f7a)

ターミナル 1 : switchbot_ros の実行

switchbot.launch 実行入力

$ source ~/switchbot_ws/devel/setup.bash
$ roslaunch switchbot_ros switchbot.launch token:=YOUR_TOKEN secret:=YOUR_SECRET pub_status:=true pub_device_name:=thermo-hygrometer-f7a
  • 注1) 上記テキストボックスの横スクロールで全 launch オプションが表示されます.
  • 注2) 各 launch オプションについて
    • YOUR_TOKENYOUR_SECRET は各々の SwitchBot アカウントのトークンとシークレットに置き換えて実行してください.
    • pub_status:=true でステータスを取得・パブリッシュを実行します.
    • pub_device_name:=thermo-hygrometer-f7athermo-hygrometer-f7a
      は各ユーザ利用のデバイス名に変更してください.

switchbot.launch 実行出力例

... logging to /home/robotuser/.ros/log/81bc64b6-faf2-11ee-8dad-e57ee950b51d/roslaunch-robotuser-PC-28197.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://robotuser-PC:35371/

SUMMARY
========

PARAMETERS
 * /rosdistro: noetic
 * /rosversion: 1.16.0
 * /switchbot_ros/secret: (シークレットの上位数桁が表示)...
 * /switchbot_ros/token: (トークンの上位数桁が表示)...
 * /switchbot_status_publisher/device_name: thermo-hygrometer...
 * /switchbot_status_publisher/rate: 0.1
 * /switchbot_status_publisher/secret: (シークレットの上位数桁が表示)...
 * /switchbot_status_publisher/token: (トークンの上位数桁が表示)...

NODES
  /
    switchbot_ros (switchbot_ros/switchbot_ros_server.py)
    switchbot_status_publisher (switchbot_ros/switchbot_status_publisher.py)

auto-starting new master
process[master]: started with pid [28205]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to 81bc64b6-faf2-11ee-8dad-e57ee950b51d
process[rosout-1]: started with pid [28215]
started core service [/rosout]
process[switchbot_ros-2]: started with pid [28222]
process[switchbot_status_publisher-3]: started with pid [28223]
[INFO] [1713163000.937913]: Switchbot API Client initialized.
[INFO] [1713163000.938005]: Switchbot API Client initialized.
[INFO] [1713163000.940084]: Using SwitchBot API v1.1
[INFO] [1713163000.940382]: Using SwitchBot API v1.1
[INFO] [1713163000.942545]: Switchbot Device List:
6 Item(s)
deviceName: bot74a, deviceID: (固有のID番号が表示), deviceType: Bot
deviceName: hub2a, deviceID: (固有のID番号が表示), deviceType: Hub 2
deviceName: plugmini7a1, deviceID: (固有のID番号が表示), deviceType: Plug Mini (JP)
deviceName: remote-button10a, deviceID: (固有のID番号が表示), deviceType: Remote
deviceName: tapelight7a1, deviceID: (固有のID番号が表示), deviceType: Strip Light
deviceName: thermo-hygrometer-f7a, deviceID: (固有のID番号が表示), deviceType: Meter

[INFO] [1713163000.944131]: Switchbot Remote List:
2 Item(s)
deviceName: air-conditioner, deviceID: (固有のID番号が表示), remoteType: Air Conditioner
deviceName: pendant-light, deviceID: (固有のID番号が表示), remoteType: DIY Light

[INFO] [1713163000.944268]: Rate: 0.1
[INFO] [1713163000.945732]: Switchbot Scene List:
2 Item(s)
sceneName: turnoff-all-lights, sceneID: (固有のID番号が表示)
sceneName: turnon-all-lights, sceneID: (固有のID番号が表示)

[INFO] [1713163000.947428]: deviceName: thermo-hygrometer-f7a / deviceType: Meter
[INFO] [1713163000.951801]: Ready: SwitchBot Status Publisher for thermo-hygrometer-f7a
[INFO] [1713163000.966800]: Ready.

ターミナル 2 : ROS トピックの確認

rostopic list の実行入力

$ source ~/switchbot_ws/devel/setup.bash
$ rostopic list

rostopic list の実行出力例

/rosout
/rosout_agg
/switchbot_ros/devices
/switchbot_ros/switch/cancel
/switchbot_ros/switch/feedback
/switchbot_ros/switch/goal
/switchbot_ros/switch/result
/switchbot_ros/switch/status
/switchbot_status_publisher/thermo_hygrometer_f7a

rostopic echo 実行入力

$ rostopic echo /switchbot_status_publisher/thermo_hygrometer_f7a

rostopic echo の実行出力例

header: 
  seq: 1
  stamp: 
    secs: 1713163093
    nsecs: 412018775
  frame_id: ''
temperature: 26.9
humidity: 36.0
battery: 100.0
---
header: 
  seq: 2
  stamp: 
    secs: 1713163103
    nsecs: 447003364
  frame_id: ''
temperature: 26.9
humidity: 36.0
battery: 100.0
---
header: 
  seq: 3
  stamp: 
    secs: 1713163113
    nsecs: 380291700
  frame_id: ''
temperature: 26.9
humidity: 36.0
battery: 100.0

SwitchBot 温湿度計 Meter のステータスデータとして温度・湿度などが取得されて ROS トピックにパブリッシュされている様子がわかるかと思います.

ステータスの取得とパブリッシュの間隔は switchbot.launch のデフォルト設定で 0.1 [Hz] = 10秒間隔 になっています.これを変更する場合には switchbot.launch のオプションで pub_status_rate:=0.05 のように追加します.温湿度のように急に変化しなさそうなデータの場合はもっと長めの間隔でも良いかもしれません.

今回の記事はここまでです.

著者:yamamoto.yosuke

SwitchBot を ROS から利用する – コマンド操作編2

本シリーズ前回の記事 SwitchBot を ROS から利用する – コマンド操作編1 では SwitchBot を ROS から利用する switchbot_ros の導入とサンプル Python コードの実行の様子を紹介しました.

今回は前回の記事の続きとしてサンプルのソースコードで扱われていた SwitchBot デバイス以外のものを ROS から操作するために SwitchBot API のコマンドセットを調べて control_switchbot.py に実装する過程について紹介します.

  1. 利用可能な SwitchBot デバイス情報の取得
  2. SwitchBot デバイス API コマンドセットの調査
  3. SwitchBot デバイスコマンドのソースコード追記

利用可能な SwitchBot デバイス情報の取得

switchbot_ros のサンプル Python コード control_switchbot.py においてボット(スイッチ)をオンにする命令は次のようになっていて「デバイス名」とそれに対する「コマンド」の2つを指定する必要があります.

client.control_device('bot74a', 'turnOn')
client.control_device('デバイス名', 'コマンド')

このうち「コマンド」は SwitchBot API にてデバイスタイプごとに設定されているので「デバイスタイプ」が何かを知る必要があります.

ユーザのアカウントで登録されているデバイスの「デバイス名」と「デバイスタイプ」は switchbot.launch を実行すると表示されます.

(下記 launch オプションの YOUR_TOKEN と YOUR_SECRET をそれぞれユーザアカウントのトークンとシークレットに置き換えて実行)

switchbot.launch 実行入力

$ source ~/switchbot_ws/devel/setup.bash
$ roslaunch switchbot_ros switchbot.launch token:=YOUR_TOKEN secret:=YOUR_SECRET

switchbot.launch 実行出力例

... logging to /home/robotuser/.ros/log/87b6e5c8-c1a2-11ee-bce7-1d89a9d14e1f/roslaunch-robotuser-PC-62866.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://robotuser-PC:40731/

SUMMARY
========

PARAMETERS
 * /rosdistro: noetic
 * /rosversion: 1.16.0
 * /switchbot_ros/secret: (シークレットの上位数桁が表示)...
 * /switchbot_ros/token: (トークンの上位数桁が表示)...

NODES
  /
    switchbot_ros (switchbot_ros/switchbot_ros_server.py)

auto-starting new master
process[master]: started with pid [62874]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to 87b6e5c8-c1a2-11ee-bce7-1d89a9d14e1f
process[rosout-1]: started with pid [62884]
started core service [/rosout]
process[switchbot_ros-2]: started with pid [62891]
[INFO] [1706861436.195243]: Switchbot API Client initialized.
[INFO] [1706861436.199678]: Using SwitchBot API v1.1
[INFO] [1706861436.204957]: Switchbot Device List:
6 Item(s)
deviceName: bot74a, deviceID: (固有のID番号が表示), deviceType: Bot
deviceName: hub2a, deviceID: (固有のID番号が表示), deviceType: Hub 2
deviceName: plugmini7a1, deviceID: (固有のID番号が表示), deviceType: Plug Mini (JP)
deviceName: remote-button10a, deviceID: (固有のID番号が表示), deviceType: Remote
deviceName: tapelight7a1, deviceID: (固有のID番号が表示), deviceType: Strip Light
deviceName: thermo-hygrometer-f7a, deviceID: (固有のID番号が表示), deviceType: Meter

[INFO] [1706861436.208853]: Switchbot Remote List:
2 Item(s)
deviceName: air-conditioner, deviceID: (固有のID番号が表示), remoteType: Air Conditioner
deviceName: pendant-light, deviceID: (固有のID番号が表示), remoteType: DIY Light

[INFO] [1706861436.214168]: Switchbot Scene List:
3 Item(s)
sceneName: turnoff-all-lights, sceneID: (固有のID番号が表示)
sceneName: turnon-all-lights, sceneID: (固有のID番号が表示)
sceneName: turnon-all-lights, sceneID: (固有のID番号が表示)

[INFO] [1706861436.254126]: Ready.

switchbot.launch 実行出力から次の1行を例にとると「デバイス名」が plugmini7a1 で「デバイスタイプ」が Plug Mini (JP) です.

deviceName: plugmini7a1, deviceID: (固有のID番号が表示), deviceType: Plug Mini (JP)

SwitchBot デバイス API コマンドセットの調査

操作したい SwitchBot デバイスタイプが分かればそのコマンドセットを調べます.SwitchBot API のコマンドセットは下記の Web ページで知ることができます.

今回はデバイスタイプ Plug Mini (JP) と Strip Light のデバイスを操作したいのでそれらのコマンドセットについて調べます.

Plug Mini (JP) のコマンドセット

電源プラグの On/Off を行う SwitchBot デバイスである Plug Mini (JP) のコマンドセットの説明は次のリンク先にあります.

上記 Web ページの Plug Mini (JP) コマンドセットの表をそのまま貼り付けたものが次の表です.

deviceType commandType Command command parameter Description
Plug Mini (JP) command turnOn default set to ON state
Plug Mini (JP) command turnOff default set to OFF state
Plug Mini (JP) command toggle default toggle state

デバイスの機能どおりに電源入 turnOn,電源切 turnOff,電源入切の切替 toggle の3つのコマンドにより構成されています.

Strip Light のコマンドセット

テープライト形状の SwitchBot デバイスである Strip Light のコマンドセットの説明は次のリンク先にあります.

上記 Web ページの Strip Light コマンドセットの表をそのまま貼り付けたものが次の表です.

deviceType commandType Command command parameter Description
Strip Light command turnOn default set to ON state
Strip Light command turnOff default set to OFF state
Strip Light command toggle default toggle state
Strip Light command setBrightness {1-100} set brightness
Strip Light command setColor "{0-255}:{0-255}:{0-255}" set RGB color value

点灯 turnOn,消灯 turnOff,明滅切替 toggle,輝度設定 setBrightness,色設定 setColor の5つのコマンドにより構成されていて,そのうち輝度設定では{1-100} の範囲で輝度設定, "{0-255}:{0-255}:{0-255}" の値で RGB 色設定を行います.

SwitchBot デバイスコマンドのソースコード追記

Plug Mini (JP) を操作するソースコード追記と実行

デバイス名 plugmini7a1 の Plug Mini (JP) を操作します. ROS からコマンドを送って On/Off の切り替え toggle をしてみます.

サンプルコード control_switchbot.py に client.control_device('plugmini7a1', 'toggle') を追加します.(下記ソースコードの 16行目)

control_switchbot.py

#!/usr/bin/env python

import rospy
from switchbot_ros.switchbot_ros_client import SwitchBotROSClient

rospy.init_node('controler_node')
client = SwitchBotROSClient()

devices = client.get_devices()
print(devices)

# client.control_device('pendant-light', 'turnOn')

# client.control_device('bot74a', 'turnOn')

client.control_device('plugmini7a1', 'toggle')

ここでは元々サンプルコードにあったペンダントライトとボット(スイッチ)の操作をする行(上記ソースコードの12,14行目)は行頭に # を入れてコメントアウトして実行されないようにしています.

変更を加えた control_switchbot.py ファイルを保存してから実行します.

ターミナル 1 : switchbot.launch 実行入力

$ source ~/switchbot_ws/devel/setup.bash
$ roslaunch switchbot_ros switchbot.launch token:=YOUR_TOKEN secret:=YOUR_SECRET

ターミナル 2 : control_switchbot.py 実行入力

$ source ~/switchbot_ws/devel/setup.bash
$ rosrun switchbot_ros control_switchbot.py 

Strip Light を操作するソースコード追記と実行

デバイス名 tapelight7a1 の Strip Light (テープライト)を操作します. ROS からコマンドを送って次の動作をしてみます.

  1. 消灯
  2. 点灯
  3. 輝度を 100% に設定
  4. 色を白 '255:255:255' に設定
  5. 色を赤 '255:0:0' に設定
  6. 色を緑 '0:255:0' に設定
  7. 色を青 '0:0:255' に設定
  8. 輝度を 1% に設定
  9. 消灯

サンプルコード control_switchbot.py に下記ソースコードの18行目以降を追加します.

値を設定する setBrightnesssetColor といったコマンドでは各数値を control_device() の引数 parameter に文字列として渡します.

また control_device() の中ではコマンドを Action サーバにゴールとして送っているので新しいコマンドが前のコマンドに置き換わらないように1つ1つのコマンド実行を終えるのを待つように引数 waitTrue を渡しています.

control_switchbot.py

#!/usr/bin/env python

import rospy
from switchbot_ros.switchbot_ros_client import SwitchBotROSClient

rospy.init_node('controler_node')
client = SwitchBotROSClient()

devices = client.get_devices()
print(devices)

# client.control_device('pendant-light', 'turnOn')

# client.control_device('bot74a', 'turnOn')

# client.control_device('plugmini7a1', 'toggle')

client.control_device('tapelight7a1', 'turnOff', wait=True)
client.control_device('tapelight7a1', 'turnOn', wait=True)
client.control_device('tapelight7a1', 'setBrightness', parameter='100', wait=True)
client.control_device('tapelight7a1', 'setColor', parameter='255:255:255', wait=True)
client.control_device('tapelight7a1', 'setColor', parameter='255:0:0', wait=True)
client.control_device('tapelight7a1', 'setColor', parameter='0:255:0', wait=True)
client.control_device('tapelight7a1', 'setColor', parameter='0:0:255', wait=True)
client.control_device('tapelight7a1', 'setBrightness', parameter='1', wait=True)
client.control_device('tapelight7a1', 'turnOff', wait=True)

前述の Plug Mini (JP) のときと同様に変更を加えた control_switchbot.py ファイルを保存してから実行します.

補足ソースコード変更

筆者が試した範囲では時々 client.control_device() が実行されない不具合が見受けられ,それが SwitchBotROSClient インスタンス作成時 client = SwitchBotROSClient() に Action サーバの起動やサーバへの接続が不十分であることが原因のように思われました.

そこで下記の switchbot_ros_client.py の21行目のように self.action_client.wait_for_server() を入れて Action サーバが起動して接続されるのを待つようにしたところ,現状では安定して client.control_device() が実行されているように感じます.

switchbot_ros_client.py

import rospy
import actionlib
from switchbot_ros.msg import SwitchBotCommandAction
from switchbot_ros.msg import SwitchBotCommandGoal
from switchbot_ros.msg import DeviceArray


class SwitchBotROSClient(object):

    def __init__(self,
                 actionname='switchbot_ros/switch',
                 topicname='switchbot_ros/devices'):

        self.actionname = actionname
        self.topicname = topicname
        self.action_client = actionlib.SimpleActionClient(
                actionname,
                SwitchBotCommandAction
                )
        rospy.loginfo("Waiting for action server to start.")
        self.action_client.wait_for_server()

    def get_devices(self, timeout=None):

        return rospy.wait_for_message(
                self.topicname,
                DeviceArray,
                timeout=timeout
                )

    def control_device(self,
                       device_name,
                       command,
                       parameter='',
                       command_type='',
                       wait=False
                       ):

        goal = SwitchBotCommandGoal()
        goal.device_name = device_name
        goal.command = command
        goal.parameter = parameter
        goal.command_type = command_type
        self.action_client.send_goal(goal)
        if wait:
            self.action_client.wait_for_result()
            return self.action_client.get_result()

今回の記事はここまでです.

著者:yamamoto.yosuke

SwitchBot を ROS から利用する – コマンド操作編1

本記事では SwitchBot を ROS から利用できるソフトウェア switchbot_ros の使い方を紹介します.


SwitchBot は多くの IoT スマートホームデバイス製品を提供しているブランドで,既にそれらを日常生活の中で活用されている方も多いのではないでしょうか.

SwitchBot からはソフトウェアインターフェースとして WebAPI が提供されていて,2024年2月はじめの時点での最新バージョンが v1.1 となっています.

SwitchBot の WebAPI を ROS から利用する switchbot_ros は下記のリポジトリで公開されていて SwitchBot API v1.1 にも対応しています.

SwitchBot の機器を ROS のシステムに組み込むことによりロボットとスマートホームデバイスを組み合わせた動作システムを簡単に実現することが可能となります.


今回は switchbot_ros を含む jsk_3rdparty リポジトリを Ubuntu PC 内の ROS ワークスペースにクローン・ビルドして ROS から SwitchBot デバイスを動作させます.

switchbot_ros のビルド

本記事では次の環境で switchbot_ros を利用しています.

  • Ubuntu 20.04
  • ROS Noetic

Ubuntu や ROS のインストールが済んだ状態で次のように switchbot_ros を利用するためのワークスペースを作成して jsk_3rdparty リポジトリをクローンしてビルドします.

$ source /opt/ros/noetic/setup.bash
$ mkdir -p ~/switchbot_ws/src
$ cd ~/switchbot_ws
$ catkin build 
$ source ~/switchbot_ws/devel/setup.bash
$ cd ~/switchbot_ws/src
$ git clone https://github.com/jsk-ros-pkg/jsk_3rdparty.git
$ cd ~/switchbot_ws
$ rosdep install -y -r --from-paths src --ignore-src
$ catkin build
$ source ~/switchbot_ws/devel/setup.bash

SwitchBot API のトークンとシークレットの取得

switchbot_ros は SwitchBot API を利用していますので SwitchBot API にアクセスするための SwitchBot アカウント各々に固有の「トークン(token)」と「シークレット(secret)」の2つの情報が必要になります.

SwitchBot Magazine – 【API】新バージョンAPI v1.1を公開しました にトークンとシークレットの取得方法などが書かれています.この記事から引用・まとめをするとトークンとシークレットの取得方法はつぎのようになっています.

  1. App Store または Google Play Store より SwitchBot アプリをダウンロード
  2. SwitchBot アカウントを作成またはサインイン
  3. オープントークンを生成
    1. 「プロフィールページ」 → 「設定」へ移動
    2. 「アプリバージョン」を10回タップ → 「開発者向けオプション」が表示される
    3. 「開発者向けオプション」をタップ
    4. 「トークン」と「クライアントシークレット」をコピーしてテキストとして保存

switchbot_ros の実行

switchbot_ros の中にあるコマンドを発する Python コード例 control_switchbot.py を実行して ROS から SwitchBot デバイスのハブの赤外線リモコン発信で部屋の電気を点灯した後にボット(スイッチ)を動作させます.

control_switchbot.py の中身はシンプルで 12行目 で照明を点灯させて,14行目 でボット(スイッチ)を On しています.

control_switchbot.py

#!/usr/bin/env python

import rospy
from switchbot_ros.switchbot_ros_client import SwitchBotROSClient

rospy.init_node('controler_node')
client = SwitchBotROSClient()

devices = client.get_devices()
print(devices)

client.control_device('pendant-light', 'turnOff')

client.control_device('bot74a', 'turnOn')
12行目で client.control_device('pendant-light', 'turnOff')'turnOff' となっているのに点灯?と思いますが筆者のペンダントライトのリモコンを SwitchBot アプリで登録する際に電源の On/Off ボタンが1つのものとして扱われていて 'turnOn''turnOff' も On/Off の切り替えボタンとして機能してしまっているためです. ( = もう一度 client.control_device('pendant-light', 'turnOff') を実行すると消灯になる) このように特に登録するリモコンについてはどのようにマッピングができたかに挙動が依存するのでコマンドに対する各々のデバイスの挙動を確認してから利用する必要があります.

操作コマンドの SwitchBot デバイスに至るまでの大まかな流れは次のようになっています.

  • control_switchbot.py
  • → SwitchBot ROS Client
  • → SwitchBot ROS Action Server
  • → SwitchBot WebAPI
  • → SwitchBot デバイス

それでは実際に実行してみます. SwitchBot ROS アクションサーバを起動してから別ターミナルで control_switchbot.py を実行します.

ターミナル 1 : SwitchBot ROS アクションサーバの起動

下記コマンドの SwichBot ROS アクションサーバの起動実行時に launch オプションの token:=YOUR_TOKENYOUR_TOKEN を SwitchBot アプリで取得したトークンに置き換えて, secret:=YOUR_SECRETYOUR_SECRET を取得したシークレットに置き換えて書いて実行します.

switchbot.launch 実行入力

$ source ~/switchbot_ws/devel/setup.bash
$ roslaunch switchbot_ros switchbot.launch token:=YOUR_TOKEN secret:=YOUR_SECRET

switchbot.launch 実行出力例

... logging to /home/robotuser/.ros/log/87b6e5c8-c1a2-11ee-bce7-1d89a9d14e1f/roslaunch-robotuser-PC-62866.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://robotuser-PC:40731/

SUMMARY
========

PARAMETERS
 * /rosdistro: noetic
 * /rosversion: 1.16.0
 * /switchbot_ros/secret: (シークレットの上位数桁が表示)...
 * /switchbot_ros/token: (トークンの上位数桁が表示)...

NODES
  /
    switchbot_ros (switchbot_ros/switchbot_ros_server.py)

auto-starting new master
process[master]: started with pid [62874]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to 87b6e5c8-c1a2-11ee-bce7-1d89a9d14e1f
process[rosout-1]: started with pid [62884]
started core service [/rosout]
process[switchbot_ros-2]: started with pid [62891]
[INFO] [1706861436.195243]: Switchbot API Client initialized.
[INFO] [1706861436.199678]: Using SwitchBot API v1.1
[INFO] [1706861436.204957]: Switchbot Device List:
6 Item(s)
deviceName: bot74a, deviceID: (固有のID番号が表示), deviceType: Bot
deviceName: hub2a, deviceID: (固有のID番号が表示), deviceType: Hub 2
deviceName: plugmini7a1, deviceID: (固有のID番号が表示), deviceType: Plug Mini (JP)
deviceName: remote-button10a, deviceID: (固有のID番号が表示), deviceType: Remote
deviceName: tapelight7a1, deviceID: (固有のID番号が表示), deviceType: Strip Light
deviceName: thermo-hygrometer-f7a, deviceID: (固有のID番号が表示), deviceType: Meter

[INFO] [1706861436.208853]: Switchbot Remote List:
2 Item(s)
deviceName: air-conditioner, deviceID: (固有のID番号が表示), remoteType: Air Conditioner
deviceName: pendant-light, deviceID: (固有のID番号が表示), remoteType: DIY Light

[INFO] [1706861436.214168]: Switchbot Scene List:
3 Item(s)
sceneName: turnoff-all-lights, sceneID: (固有のID番号が表示)
sceneName: turnon-all-lights, sceneID: (固有のID番号が表示)
sceneName: turnon-all-lights, sceneID: (固有のID番号が表示)

[INFO] [1706861436.254126]: Ready.

ターミナル 2 : control_switchbot.py の実行

ターミナル1 の switchbot.launch を起動したままの状態で別のターミナルで control_switchbot.py を実行します.

control_switchbot.py 実行入力

$ source ~/switchbot_ws/devel/setup.bash
$ rosrun switchbot_ros control_switchbot.py 

control_switchbot.py 実行出力例

devices: 
  - 
    name: "bot74a"
    type: "Bot"
  - 
    name: "hub2a"
    type: "None"
  - 
    name: "plugmini7a1"
    type: "Plug Mini (JP)"
  - 
    name: "remote-button10a"
    type: "Remote"
  - 
    name: "tapelight7a1"
    type: "Strip Light"
  - 
    name: "thermo-hygrometer-f7a"
    type: "Meter"
  - 
    name: "air-conditioner"
    type: "Air Conditioner"
  - 
    name: "pendant-light"
    type: "DIY Light"

control_switchbot.py 実行出力時の SwitchBot デバイス動作の様子

SwitchBot を ROS から操作する感じが伝わりましたでしょうか?

今回の記事はここまでです.


本シリーズ次回の記事では今回実行した Python コード例で扱われていたもの以外の SwitchBot デバイスを ROS から操作するために SwitchBot API を調べて control_switchbot.py にコマンドを追加する様子についてお伝えする予定です.

著者:yamamoto.yosuke

ChatGPT と ROS – ROS Topic を介した ChatGPT チャットプログラム

本シリーズ前回の記事 1. ROS Service プログラムの文脈をふまえたチャット対応 では OpenAI の Chat Completion API を利用して過去のチャット履歴もふまえたチャットを行える ROS Service プログラムを作成した様子をお伝えしました.

今回の記事では Chat Completion API を利用した「文脈をふまえたチャット」をする ROS ソフトウェアを実装してみた2つ目の方法「2. ROS Topic を介した ChatGPT チャットプログラム」を作成した様子を紹介します.

  1. ROS Service プログラムの文脈をふまえたチャット対応
    • 「1問1答」形式 →「チャット」形式
  2. ROS Topic を介した ChatGPT チャットプログラム
    • ROS Service の応答 → ROS Topic のやり取りによる ChatGPT とのチャット

ROS Topic を介した ChatGPT のチャットプログラム

前回,比較的短文のチャットを扱う Chat Completion API へのアクセスであれば ROS Service よりも ROS Topic を介したメッセージのやり取りの方が ROS ノード内でのチャット会話に限られず,より ROS に親和的でよりシンプルな構成になるのでは?という反省がありました.

今回の ROS Topic を用いたチャットプログラムの作成方針は次のようにしました.

  • Chat Completion API にアクセスする ROS Node
    • ROS Topic /request を購読してユーザの発言を得る
    • ユーザの発言をふまえて Chat Completion API にアクセスして応答を ROS Topic /response としてパブリッシュする
    • チャットの履歴データを蓄積する
  • チャットユーザ側
    • 質問を ROS Topic /request にパブリッシュする
    • 返答は ROS Topic /response を購読して得る

ROS Service プログラムの場合はチャット履歴をふまえたとしてもチャット機能提供側とユーザとの1者対1者でのやり取りでしたが,ROS Topic にすることでチャット機能提供側と複数のユーザの1者対他者でのやり取りも可能になる利点もあります.

ソースコード

ROS Topic を介した文脈をふまえたチャットプログラムで追加したファイルは次の2つです.

  • scripts / openai_chat_rostopic.py
  • launch / openai_chat.launch

サービスの定義など考慮しなくて良いので非常にシンプルです.

以下,それぞれのファイル内のコードを記載して少し説明をします.

scripts / openai_chat_rostopic.py

#!/usr/bin/env python3

import rospy
import openai

from std_msgs.msg import String


class Chatter:
    """
    Chat with ChatGPT on ROS topics
    """
    def __init__(self):
        # Get ROS parameters
        prompt = rospy.get_param('~prompt')
        self.model = rospy.get_param('~model')
        openai.api_key = rospy.get_param('~key')
        
        rospy.loginfo("For \'system\': %s" % (prompt))
        
        # Set initial message with a prompt
        self.messages = []
        self.messages.append({"role": "system", "content": str(prompt)})
        
        self.sub = rospy.Subscriber('request', String, self.callback)
        self.pub = rospy.Publisher('response', String, queue_size=10)
        
        rospy.spin()


    def callback(self, data):
        rospy.loginfo("request: %s", data.data)
        
        # Add user's input to the history
        self.messages.append({"role": "user", "content": str(data.data)})
        
        response = openai.ChatCompletion.create(
            model=self.model,
            messages=self.messages
        )
        
        content = response["choices"][0]["message"]["content"]
        role = response["choices"][0]["message"]["role"]
        token = response["usage"]["total_tokens"]
        
        # Add GPT's response to the history
        self.messages.append({"role": str(role), "content": str(content)})
        
        rospy.loginfo("%s(token:%d): %s" % (role, token, content))
        self.pub.publish(content)


if __name__ == "__main__":
    rospy.init_node('chat_rostopic', anonymous=True)
    chatter = Chatter()
    
  • L25,31: ROS Topic /request を購読(Subscribe)してトピックを受け取ったら callback() メソッドを呼び出す
  • L35: callback() メソッド内で新たなリクエストをチャット履歴に追加
  • L37-40: Chat Completion API に投げる
  • L47: Chat Completion API からの返答をチャット履歴に追加
  • ROS Topic /response としてパブリッシュ

launch / openai_chat.launch

launch オプション service を用いて前回の記事で紹介した ROS Service によるチャットプログラムと今回の ROS Topic を介したチャットプログラムのどちらを実行するかを切り替えるようにしています.

<launch>
  
  <arg name="key" default="$(env OPENAI_API_KEY)" />
  <arg name="model" default="gpt-3.5-turbo" />
  <arg name="service" default="false" />
  <arg name="prompt" default="You are a helpful assistant." />
  
  <node if="$(arg service)"
        pkg="openai_ros" type="openai_chat_server.py" name="openai_chat_service" output="screen">
    <param name="key" value="$(arg key)" />
    <param name="model" value="$(arg model)" />
  </node>
  
  <node unless="$(arg service)"
        pkg="openai_ros" type="openai_chat_rostopic.py" name="openai_chat_topic" output="screen">
    <param name="key" value="$(arg key)" />
    <param name="model" value="$(arg model)" />
    <param name="prompt" value="$(arg prompt)" />
  </node>
  
</launch>

実行例

文脈をふまえた ROS Topic を介したチャットプログラムを実行した例を以下に記載します.

ターミナル 1 : チャットノードの起動

Chat Completion API にアクセスして ROS Topic でやり取りする ROS Node を openai_chat.launch で起動しています.

robotuser@robotuser-PC:~$ source ~/openai_ws/devel/setup.bash
robotuser@robotuser-PC:~$ export OPENAI_API_KEY="sk-..."
robotuser@robotuser-PC:~$ roslaunch openai_ros openai_chat.launch 
... logging to /home/robotuser/.ros/log/609f8d12-52cd-11ee-9968-6b3ff6703622/roslaunch-robotuser-PC-5035.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://robotuser-PC:40257/

SUMMARY
========

PARAMETERS
 * /openai_chat/key: sk-3JDluBbxsNuIhi...
 * /openai_chat/model: gpt-3.5-turbo
 * /openai_chat/prompt: You are a helpful...
 * /rosdistro: noetic
 * /rosversion: 1.16.0

NODES
  /
    openai_chat (openai_ros/openai_chat_rostopic.py)

auto-starting new master
process[master]: started with pid [5043]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to 609f8d12-52cd-11ee-9968-6b3ff6703622
process[rosout-1]: started with pid [5053]
started core service [/rosout]
process[openai_chat-2]: started with pid [5060]
[INFO] [1694675254.662674]: For 'system': You are a helpful assistant.
[INFO] [1694675266.017788]: request: Hello
[INFO] [1694675267.401076]: assistant(token:27): Hello! How can I assist you today?
[INFO] [1694675292.897892]: request: インターネットはどこにありますか?
[INFO] [1694675300.168180]: assistant(token:183): インターネットは物理的な場所にあるのではなく,世界中のコンピューターがネットワークで結ばれている仮想的な空間です.インターネットは,データを送信し受け取るためのプロトコルとパケット交換技術を使用しています.つまり,インターネットは世界中のコンピューターネットワークの集合体です.
[INFO] [1694675347.975610]: request: 世界中とは地球のことですか?
[INFO] [1694675354.647098]: assistant(token:324): はい,正確に言えば,インターネットは地球上のコンピューターネットワークの集合体です.このネットワークには,地球上の様々な場所に設置されたサーバーやルーターなどの機器が含まれます.インターネットのデータ通信は,これらの機器を介して行われます.
[INFO] [1694675387.510775]: request: あなたは誰ですか?
[INFO] [1694675391.409440]: assistant(token:407): 私はAI(人工知能)ベースのヘルプフルなアシスタントです.質問や問題解決,情報の提供など,お手伝いできることがありましたらお知らせください.
[INFO] [1694675436.047036]: request: どのようにヘルプフルですか?
[INFO] [1694675447.019485]: assistant(token:645): 私は多くの情報と知識を持つAIですので,様々な質問や問題に対してお答えすることができます.例えば,旅行の予約や天気予報の確認,翻訳や研究のサポート,一般的な知識の提供など,さまざまな分野でお手伝いすることができます.また,自然言語処理の技術を利用して,あなたの質問や要求を理解し,最適な回答やソリューションを提供することも可能です.お困りのことや疑問があれば,いつでもお気軽にお知らせください.
[INFO] [1694675485.687087]: request: 東京の明日の天気もわかりますか?
[INFO] [1694675507.944942]: assistant(token:1064): もちろんです!東京の天気予報を調べてみましょう.

私はリアルタイムのデータにアクセスできるわけではありませんが,一般的に天気予報を提供する公式のウェブサイトやアプリを利用して,詳細な天気予報を確認することができます.天気予報は頻繁に更新されるため,事前に確認することをおすすめします.以下は一般的な天気予報サービスの利用方法です.

- インターネット検索エンジンで「東京の天気予報」と検索すると,現在の天気情報と明日の天気予報を含む結果が表示されます.
- スマートフォンやタブレットを使用している場合は,天気予報を提供するアプリをダウンロードしてインストールすることもできます.定番のアプリには「Weather」や「Weather Underground」などがあります.

これらの方法を使用して,明日の東京の天気を確認してみてください.天気予報に関する詳細な情報を入手するためには,地元の気象庁や天気予報サービスの公式ウェブサイトを参照することもおすすめです.
^C[openai_chat-2] killing on exit
[rosout-1] killing on exit
[master] killing on exit
shutting down processing monitor...
... shutting down processing monitor complete
done
robotuser@robotuser-PC:~$ 

ターミナル 2 : ROS Topic に発言をパブリッシュ

1つ目のターミナルで openai_chat.launch を起動したままの状態で2つ目のターミナルから ROS Topic をパブリッシュします.

robotuser@robotuser-PC:~$ rostopic pub -1 /request std_msgs/String "Hello"
publishing and latching message for 3.0 seconds
robotuser@robotuser-PC:~$ rostopic pub -1 /request std_msgs/String "インターネットはどこにありますか ?"
publishing and latching message for 3.0 seconds
robotuser@robotuser-PC:~$ rostopic pub -1 /request std_msgs/String "世界中とは地球のことですか?"
publishing and latching message for 3.0 seconds
robotuser@robotuser-PC:~$ rostopic pub -1 /request std_msgs/String "あなたは誰ですか?"
publishing and latching message for 3.0 seconds
robotuser@robotuser-PC:~$ rostopic pub -1 /request std_msgs/String "どのようにヘルプフルですか?"
publishing and latching message for 3.0 seconds
robotuser@robotuser-PC:~$ rostopic pub -1 /request std_msgs/String "東京の明日の天気もわかりますか?"
publishing and latching message for 3.0 seconds
robotuser@robotuser-PC:~$ 

ターミナル 3 : チャットノードからの応答の ROS Topic を確認

3つ目のターミナルで ROS Topic /response に Chat Completion API からの応答がパブリッシュされているかを確認します.コンソール出力では文字コード化して可読性がないですが Python で print()rospy.loginfo() で出力すると ターミナル 1 のような読める日本語で表示されます.

robotuser@robotuser-PC:~$ rostopic echo /response 
data: "\u79C1\u306FAI\uFF08\u4EBA\u5DE5\u77E5\u80FD\uFF09\u30D9\u30FC\u30B9\u306E\u30D8\u30EB\
  \u30D7\u30D5\u30EB\u306A\u30A2\u30B7\u30B9\u30BF\u30F3\u30C8\u3067\u3059\u3002\u8CEA\
  \u554F\u3084\u554F\u984C\u89E3\u6C7A\u3001\u60C5\u5831\u306E\u63D0\u4F9B\u306A\u3069\
  \u3001\u304A\u624B\u4F1D\u3044\u3067\u304D\u308B\u3053\u3068\u304C\u3042\u308A\u307E\
  \u3057\u305F\u3089\u304A\u77E5\u3089\u305B\u304F\u3060\u3055\u3044\u3002"
---
data: "\u79C1\u306F\u591A\u304F\u306E\u60C5\u5831\u3068\u77E5\u8B58\u3092\u6301\u3064AI\u3067\
  \u3059\u306E\u3067\u3001\u69D8\u3005\u306A\u8CEA\u554F\u3084\u554F\u984C\u306B\u5BFE\
  \u3057\u3066\u304A\u7B54\u3048\u3059\u308B\u3053\u3068\u304C\u3067\u304D\u307E\u3059\
  \u3002\u4F8B\u3048\u3070\u3001\u65C5\u884C\u306E\u4E88\u7D04\u3084\u5929\u6C17\u4E88\
  \u5831\u306E\u78BA\u8A8D\u3001\u7FFB\u8A33\u3084\u7814\u7A76\u306E\u30B5\u30DD\u30FC\
  \u30C8\u3001\u4E00\u822C\u7684\u306A\u77E5\u8B58\u306E\u63D0\u4F9B\u306A\u3069\u3001\
  \u3055\u307E\u3056\u307E\u306A\u5206\u91CE\u3067\u304A\u624B\u4F1D\u3044\u3059\u308B\
  \u3053\u3068\u304C\u3067\u304D\u307E\u3059\u3002\u307E\u305F\u3001\u81EA\u7136\u8A00\
  \u8A9E\u51E6\u7406\u306E\u6280\u8853\u3092\u5229\u7528\u3057\u3066\u3001\u3042\u306A\
  \u305F\u306E\u8CEA\u554F\u3084\u8981\u6C42\u3092\u7406\u89E3\u3057\u3001\u6700\u9069\
  \u306A\u56DE\u7B54\u3084\u30BD\u30EA\u30E5\u30FC\u30B7\u30E7\u30F3\u3092\u63D0\u4F9B\
  \u3059\u308B\u3053\u3068\u3082\u53EF\u80FD\u3067\u3059\u3002\u304A\u56F0\u308A\u306E\
  \u3053\u3068\u3084\u7591\u554F\u304C\u3042\u308C\u3070\u3001\u3044\u3064\u3067\u3082\
  \u304A\u6C17\u8EFD\u306B\u304A\u77E5\u3089\u305B\u304F\u3060\u3055\u3044\u3002"
---
data: "\u3082\u3061\u308D\u3093\u3067\u3059\uFF01\u6771\u4EAC\u306E\u5929\u6C17\u4E88\u5831\
  \u3092\u8ABF\u3079\u3066\u307F\u307E\u3057\u3087\u3046\u3002\n\n\u79C1\u306F\u30EA\
  \u30A2\u30EB\u30BF\u30A4\u30E0\u306E\u30C7\u30FC\u30BF\u306B\u30A2\u30AF\u30BB\u30B9\
  \u3067\u304D\u308B\u308F\u3051\u3067\u306F\u3042\u308A\u307E\u305B\u3093\u304C\u3001\
  \u4E00\u822C\u7684\u306B\u5929\u6C17\u4E88\u5831\u3092\u63D0\u4F9B\u3059\u308B\u516C\
  \u5F0F\u306E\u30A6\u30A7\u30D6\u30B5\u30A4\u30C8\u3084\u30A2\u30D7\u30EA\u3092\u5229\
  \u7528\u3057\u3066\u3001\u8A73\u7D30\u306A\u5929\u6C17\u4E88\u5831\u3092\u78BA\u8A8D\
  \u3059\u308B\u3053\u3068\u304C\u3067\u304D\u307E\u3059\u3002\u5929\u6C17\u4E88\u5831\
  \u306F\u983B\u7E41\u306B\u66F4\u65B0\u3055\u308C\u308B\u305F\u3081\u3001\u4E8B\u524D\
  \u306B\u78BA\u8A8D\u3059\u308B\u3053\u3068\u3092\u304A\u3059\u3059\u3081\u3057\u307E\
  \u3059\u3002\u4EE5\u4E0B\u306F\u4E00\u822C\u7684\u306A\u5929\u6C17\u4E88\u5831\u30B5\
  \u30FC\u30D3\u30B9\u306E\u5229\u7528\u65B9\u6CD5\u3067\u3059\u3002\n\n- \u30A4\u30F3\
  \u30BF\u30FC\u30CD\u30C3\u30C8\u691C\u7D22\u30A8\u30F3\u30B8\u30F3\u3067\u300C\u6771\
  \u4EAC\u306E\u5929\u6C17\u4E88\u5831\u300D\u3068\u691C\u7D22\u3059\u308B\u3068\u3001\
  \u73FE\u5728\u306E\u5929\u6C17\u60C5\u5831\u3068\u660E\u65E5\u306E\u5929\u6C17\u4E88\
  \u5831\u3092\u542B\u3080\u7D50\u679C\u304C\u8868\u793A\u3055\u308C\u307E\u3059\u3002\
  \n- \u30B9\u30DE\u30FC\u30C8\u30D5\u30A9\u30F3\u3084\u30BF\u30D6\u30EC\u30C3\u30C8\
  \u3092\u4F7F\u7528\u3057\u3066\u3044\u308B\u5834\u5408\u306F\u3001\u5929\u6C17\u4E88\
  \u5831\u3092\u63D0\u4F9B\u3059\u308B\u30A2\u30D7\u30EA\u3092\u30C0\u30A6\u30F3\u30ED\
  \u30FC\u30C9\u3057\u3066\u30A4\u30F3\u30B9\u30C8\u30FC\u30EB\u3059\u308B\u3053\u3068\
  \u3082\u3067\u304D\u307E\u3059\u3002\u5B9A\u756A\u306E\u30A2\u30D7\u30EA\u306B\u306F\
  \u300CWeather\u300D\u3084\u300CWeather Underground\u300D\u306A\u3069\u304C\u3042\
  \u308A\u307E\u3059\u3002\n\n\u3053\u308C\u3089\u306E\u65B9\u6CD5\u3092\u4F7F\u7528\
  \u3057\u3066\u3001\u660E\u65E5\u306E\u6771\u4EAC\u306E\u5929\u6C17\u3092\u78BA\u8A8D\
  \u3057\u3066\u307F\u3066\u304F\u3060\u3055\u3044\u3002\u5929\u6C17\u4E88\u5831\u306B\
  \u95A2\u3059\u308B\u8A73\u7D30\u306A\u60C5\u5831\u3092\u5165\u624B\u3059\u308B\u305F\
  \u3081\u306B\u306F\u3001\u5730\u5143\u306E\u6C17\u8C61\u5E81\u3084\u5929\u6C17\u4E88\
  \u5831\u30B5\u30FC\u30D3\u30B9\u306E\u516C\u5F0F\u30A6\u30A7\u30D6\u30B5\u30A4\u30C8\
  \u3092\u53C2\u7167\u3059\u308B\u3053\u3068\u3082\u304A\u3059\u3059\u3081\u3067\u3059\
  \u3002"
---

ChatGPT に対して問い合わせる側が人間であれば応答から自分で文脈をふまえて次の会話をすると思いますが,クライアントプログラムの場合は文脈をふまえた会話をしたければクライアント側のソフトウェアも ROS Topic を拾って自分で文脈を記録して解釈する必要があります.

ChatGPT vs ChatGPT

Chat Completion API との応答を ROS Topic を介してやり取りしているので,複数の Chat ノード(openai_chat_rostopic.py)を実行してトピックの remap をして互いのノードの応答を自らのノードの入力にすれば ChatGPT 同士で会話を続けるようにすることも簡単にできます.

そのために openai_chat.launch を次のように変更しました.

<launch>
  
  <arg name="key" default="$(env OPENAI_API_KEY)" />
  <arg name="model" default="gpt-3.5-turbo" />
  <arg name="service" default="false" />
  <arg name="opponent" default="false" />
  <arg name="prompt" default="You are a helpful assistant." />
  
  <node if="$(arg service)"
        pkg="openai_ros" type="openai_chat_server.py" name="openai_chat_service" output="screen">
    <param name="key" value="$(arg key)" />
    <param name="model" value="$(arg model)" />
  </node>
  
  <group unless="$(arg service)">
    <node pkg="openai_ros" type="openai_chat_rostopic.py" name="openai_chat_topic" output="screen">
      <param name="key" value="$(arg key)" />
      <param name="model" value="$(arg model)" />
      <param name="prompt" value="$(arg prompt)" />
    </node>
   
    <group ns="opponent" if="$(arg opponent)">
      <node pkg="openai_ros" type="openai_chat_rostopic.py" name="openai_chat_topic">
        <param name="key" value="$(arg key)" />
        <param name="model" value="$(arg model)" />
        <param name="prompt" value="You are a good talker." />
        <remap from="/opponent/request" to="/response" />
        <remap from="/opponent/response" to="/request" />
      </node>
    </group>  
  </group>
  
</launch>
  • L6: launch オプシション opponent で ChatGPT 同士の会話にするかを指定
  • L22: 2つ目のチャットノードは別のネームスペースとして区別
  • L23: 2つ目のチャットノードのコンソール出力も表示すると内容が重複するので output="screen" はなし
  • L26: prompt の設定でアシスタント同士だと会話が不自然な感じがしたので(とりあえず)2つ目のプロンプトは “You are a good talker.” としてみた
  • L27-28: remap/request/response を入れ替え

ターミナル 1 : 2つのチャットノードの起動

openai_chat.launch の起動オプション opponent:=true で2つのチャットノード実行とトピックの remap を行います.

起動した状態では応答は何もないですが ターミナル 2 から ROS トピック /request に最初のリクエストを1つパブリッシュすることで以後 ChatGPT 同士の会話が始まります.

robotuser@robotuser-PC:~$ roslaunch openai_ros openai_chat.launch opponent:=true
... logging to /home/robotuser/.ros/log/9cc9a1be-5dc8-11ee-9968-6b3ff6703622/roslaunch-robotuser-PC-35705.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://robotuser-PC:42615/

SUMMARY
========

PARAMETERS
 * /openai_chat_topic/key: sk-3JDluBbxsNuIhi...
 * /openai_chat_topic/model: gpt-3.5-turbo
 * /openai_chat_topic/prompt: You are a helpful...
 * /opponent/openai_chat_topic/key: sk-3JDluBbxsNuIhi...
 * /opponent/openai_chat_topic/model: gpt-3.5-turbo
 * /opponent/openai_chat_topic/prompt: You are a good ta...
 * /rosdistro: noetic
 * /rosversion: 1.16.0

NODES
  /
    openai_chat_topic (openai_ros/openai_chat_rostopic.py)
  /opponent/
    openai_chat_topic (openai_ros/openai_chat_rostopic.py)

auto-starting new master
process[master]: started with pid [35714]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to 9cc9a1be-5dc8-11ee-9968-6b3ff6703622
process[rosout-1]: started with pid [35724]
started core service [/rosout]
process[openai_chat_topic-2]: started with pid [35731]
process[opponent/openai_chat_topic-3]: started with pid [35732]
[INFO] [1695882670.941923]: For 'system': You are a helpful assistant.
[INFO] [1695882677.451265]: request: サッカーの盛んな国を1つ挙げてください.
[INFO] [1695882679.335665]: assistant(token:60): ブラジルはサッカーの盛んな国として知られています.
[INFO] [1695882705.653403]: request: そうですね,ブラジルは世界でも有名なサッカーの強豪国として知られています.ブラジルではサッカーは国民的なスポーツであり,多くの人々が熱狂的に応援しています.

ブラジル代表チームは過去に5回のワールドカップ優勝を果たし,サッカーの歴史においても最も成功した国の一つです.有名な選手も多く輩出しており,ペレやジーコ,ロナウド,ロナウジーニョ,ネイマールなど,数々の伝説的なプレーヤーがブラジルから生まれています.

ブラジルではサッカーの試合が行われると,町中が一体となって応援に熱が入ります.カラフルな応援旗やドラム,歌声,そして華麗なサンバの踊りなど,独特のエネルギーと情熱が試合会場を包みます.

また,ブラジルには多くの有名なサッカークラブがあります.サンパウロのサンパウロFC,リオデジャネイロのフラメンゴ,サントス,リオグランデ・ド・スールのグレミオ,コリンチャンスなど,これらのクラブは強豪として名高いだけでなく,ファンの熱心さも有名です.

ブラジルのサッカーは単なるスポーツ以上のものであり,国民の誇りやアイデンティティの一部となっています.サッカーを通じて,ブラジルの文化や人々の情熱を感じることができるでしょう.
[INFO] [1695882713.741564]: assistant(token:754): その通りです.ブラジルのサッカーは国民の誇りであり,文化の一部として重要な役割を果たしています.多くの人々がサッカーに情熱を注ぎ,試合を熱狂的に応援する様子は見る価値があります.ブラジルのサッカーは世界中で愛され,その魅力は他の国にも広まっています.それだけに,ブラジルはサッカーの盛んな国として有名です.
[INFO] [1695882744.670979]: request: そうですね,ブラジルのサッカーの魅力は世界中に広まっており,多くの人々がその情熱に共感しています.ブラジル代表チームやクラブチームの試合は,テレビやインターネットを通じて世界中に配信されており,多くのサッカーファンがその魅力に触れることができます.

さらに,ブラジルのサッカー文化は技術,創造性,スピード,そしてリズム感を特徴としています.ブラジルのサッカー選手は驚くほど優れたテクニックを持ち,美しいプレーを見せることで知られています.彼らのキレのあるドリブル,正確なパス,そして豪快なシュートは,多くの人々に感動を与えます.

ブラジルのサッカーの成功は,その国の熱狂的なサッカーカルチャーとも関連しています.子供たちは幼い頃からサッカーボールを蹴り,街角やビーチでプレーする様子をよく見かけます.サッカースクールやアカデミーも充実しており,若い才能は早いうちから育成されています.

ブラジルのサッカーは単なるスポーツの一環ではなく,国民の誇りやアイデンティティの一部です.多くの人々が試合を通じて喜びや感動を共有し,サッカーを通じて結びついています.ブラジルのサッカー文化は他の国々にも影響を与え,彼らのスタイルやプレースタイルが憧れとなっています.

ブラジルのサッカーは確かに盛んな国であり,その魅力は世界中に広がっています.それはブラジルの人々の情熱と才能,そしてサッカー文化の豊かさによるものです.
[INFO] [1695882752.038028]: assistant(token:1519): 完全に同意します.ブラジルのサッカーカルチャーは,国民の情熱と才能,そして豊かなサッカー文化によって支えられています.その魅力は世界中に広まり,多くの人々がブラジルのサッカーに感動を覚えています.ブラジルのサッカーは間違いなく世界的な影響力を持っており,多くの国々で愛される存在です.
[INFO] [1695882760.235372]: request: ありがとうございます.ブラジルのサッカーは確かに世界的な影響力を持っており,多くの人々に愛されています.その独特のスタイルと情熱は,他の国々のサッカーカルチャーにも大きな影響を与えています.ブラジルのサッカーは常に進化し,新たな才能が次々に生まれることで,さらなる魅力と成功を築いていくでしょう.
^C[opponent/openai_chat_topic-3] killing on exit
[openai_chat_topic-2] killing on exit
[rosout-1] killing on exit
[master] killing on exit
shutting down processing monitor...
... shutting down processing monitor complete
done
robotuser@robotuser-PC:~$ 

ターミナル 2 : 最初の話題投下

robotuser@robotuser-PC:~$ rostopic pub -1 /request std_msgs/String "サッカーの盛んな国を1つ挙げてください."
publishing and latching message for 3.0 seconds
robotuser@robotuser-PC:~$ 

ROS ノードグラフ

rqt の ROS Node Graph でノードとトピックの様子を確認してみると,2つのノード /openai_chat_topic/opponent/openai_chat_topic とが互いの応答トピックを参照して循環していることが見て取れます.

ターミナル 1 の出力にも現れていますが段々と応答の文字数が互いに多くなる傾向があります.ChatGPT の token 数の上限に達して終わったりしますが,そうでない限りはずっと ChatGPT 同士で応答を続けるので終わらせたい場合は Ctrl-C で終わらせます.


文脈のデータを蓄積して多くなると Chat Completion API の token を消費してしまいますし,応答に時間がかかったりもします.一定時間会話がなかった場合やそれまでの文脈からがらりと話題を変える場合のために文脈を含めたメッセージデータを初期化するメソッドも運用上は必要かもしれません.

また,OpenAI 以外の大規模言語モデル(LLM)の API の ROS Topic ラッパがあれば(or を作れば)異なる LLM 間での会話も可能であろうと思います.


今回の記事はここまでです.

著者:yamamoto.yosuke

信州大学の HIRO ロボットソフトウェアが Ubuntu 20.04 + ROS Noetic に対応

先日,長野市にある信州大学の山崎研究室を訪問して Ubuntu 20.04 および ROS Noetic に対応した HIRO ロボットソフトウェアを納品しました.

山崎研究室では HIRO で AI を用いたロボット制御などを行っているとのことで,今回は GPU ボードを搭載したワークステーションに Ubuntu 20.04 および ROS Noetic に対応した HIRO ロボットソフトウェアをインストールしました.

HIRO ロボットは新しいソフトウェアを得て今後も活躍してくれることと思います.


なお, 今回の HIRO とともに TORK では NEXTAGE OPEN も Ubuntu 20.04 および ROS Noetic に対応したロボットソフトウェアの動作確認をしました.

NEXTAGE OPEN や HIRO を Python3 で動かすことや ROS Noetic で使うことにご興味がありましたら,TORK( info@opensource-robotics.tokyo.jp )にお問い合わせいただけたらと思います.


関連記事: 信州大学 山崎研究室でHiroに会いました!

信州大学 山崎研究室でHiroに会いました!

著者:yamamoto.yosuke

Gazebo/MoveIt のための 3D モデリング(14)MoveIt の動モデルの作成

本シリーズ前回の記事 Gazebo/MoveIt のための 3D モデリング(13)MoveIt の静モデルの作成 では CAD などからエクスポートしたメッシュデータファイルを MoveIt の静モデルとしてモデルファイルに組み込んで表示する方法を紹介しました.

今回は洗濯機の URDF (Unified Robot Description Format) モデルにドアのヒンジなどの動く箇所を設定して,より機械らしい(ロボットに近い)モデルにする様子を紹介します.

各リンクモデルメッシュのエクスポート

前回の MoveIt の静モデル作成においては洗濯機全体として1つのメッシュデータファイル( DAE もしくは STL )をエクスポートして利用しました.

MoveIt のリンクモデル作成では各リンクに対応したメッシュをそれぞれエクスポートしてそれぞれのリンクのメッシュファイルとして利用します.

今回の洗濯機モデルでは次の3つのリンク構成にします.

  • 洗濯機本体: main-body
  • 洗濯槽の扉: door
  • 洗剤投入トレイ: tray

今回は「洗濯機本体(main-body)」は元の洗濯機全体の座標系そのままとするので配置の変更はしません.

「洗濯槽の扉(door)」と「洗剤投入トレイ(tray)」の形状データを各リンクの座標系原点に配置します.

元々の洗濯機全体の座標系で配置されたオブジェクトを残しつつ,別途各リンクのエクスポート用にリンク座標系の原点にオブジェクトを配置してメッシュデータとしてエクスポートします.

Rhinoceros では右の図のようにオブジェクトを含む既存のレイヤを右クリックするとメニューに「レイヤとオブジェクトを複製」ができるのでこの機能で複製した先のレイヤで作業すると良いでしょう.

各リンク座標系基準の配置用レイヤでそれぞれの各リンクは次のように配置しました.

  • 洗濯機本体: main-body
    • 位置: 変更なし
    • 角度: 変更なし
  • 洗濯槽の扉: door
    • 位置: 開閉ヒンジ回転軸の中心が座標原点
    • 角度: 開閉ヒンジ回転軸を Z軸 に一致
  • 洗剤投入トレイ: tray
    • 位置: 最後下部エッジ中心が座標原点
    • 角度: 変更なし

各リンク座標基準に配置したオブジェクトを選択して「選択オブジェクトをエクスポート」コマンドから DAE (Collada) か STL 形式でエクスポートします.

Rhinoceros から DAE (Collada) をエクスポートする場合はエクスポートオプションにて
ジオメトリのみを保存」のみにチェック
を入れてファイルを書き出します.

この「ジオメトリのみを保存」でも色や単位情報も保存されます.

今回は表示(visual)用に色付きの DAE ファイルとしてエクスポートし,干渉チェック(collision)用にデータ量を少なくするため粗目の設定で STL ファイルをエクスポートしました.

  • 表示 visual 用 DAE ファイル
    • main-body.dae
    • door.dae
    • tray.dae
  • 干渉チェック collision 用 STL ファイル
    • main-body.stl
    • door.stl
    • tray.stl

リンク機構を含む URDF モデルファイルの作成

DAE や STL のメッシュデータのエクスポートが終わったらリンク機構を含む URDF モデルファイルを作成します.

ファイル配置

3dmodeling-examples/models/urdf/
├── meshes
│   └── washing-machine
│       ├── base_link.dae
│       ├── base_link.stl
│       ├── door.dae
│       ├── door.stl
│       ├── main-body.dae
│       ├── main-body.stl
│       ├── tray.dae
│       └── tray.stl
├── washing-machine_links.urdf
└── washing-machine.urdf

前回作成してメッシュファイルを配置したフォルダ
3dmodeling-examples/models/urdf/meshes
内にエクスポートしたメッシュファイルを配置します.

そしてフォルダ 3dmodeling-examples/models/urdf/ にファイル washing-machine_links.urdf をテキストファイルとして作成してそこにリンク機構を含む URDF モデルを作り込みます.前回作成したファイル washing-machine.urdf を複製してファイルの名前を変更しても良いです.

リンクの相対姿勢・可動域の確認

URDF データで 「洗濯機本体(main-body)」 と 「洗濯槽の扉(door)」 および 「洗剤投入トレイ(tray)」 それぞれの相対的な姿勢の関係とそれぞれの可動域を 「関節(joint)」 として定義しますので, CAD ( Rhinoceros など ) 上で相対姿勢および可動域の測定を行います.

その際,各リンクオブジェクトについて DAE や STL ファイルへのエクスポート用に原点へ移動した配置ではなく元々の洗濯機全体内での配置で調べるということに注意してください.

まずは 「洗濯機本体(main-body)」 と並進的な相対位置関係にある 「洗剤投入トレイ(tray)」 の座標の確認と設定可能な可動域を調べます.

  • 洗濯機本体(main-body) → 洗剤投入トレイ(tray)
    • 相対位置: 洗濯機本体原点から ( 0.0 , -190.00 , 956.00 ) [mm] の位置
    • 相対角度: ゼロ
    • 可動域: 前方へ 200 [mm] とした

次に 「洗濯機本体(main-body)」 と 「洗濯槽の扉(door)」 の相対座標・角度やの確認と設定可能な可動域を調べます.

扉は傾いて洗濯機本体に取り付けられているのでその角度とヒンジ回りの可動域も調べます.Rhinoceros では角度表示がラジアンでもできるのでそれを利用します.

  • 洗濯機本体(main-body) → 洗濯槽の扉(door)
    • 相対位置: 洗濯機本体原点から ( 306.58 , -258.00 , 675.82 ) [mm] の位置
    • 相対角度: 洗濯槽の扉(door)原点から Y軸と平行な軸 回りに 0.1396 [rad] (= 8.0 [deg] )
    • 可動域: ヒンジを軸に閉じた状態から 1.8326 [rad] (= 105 [deg] ) 開くとした

URDF データの作成

リンクモデルに必要なメッシュファイルと情報が揃いましたので URDF ファイルに書き込んだものが次のようになります.

washing-machine_links.urdf
<?xml version="1.0" ?>

<robot name="washing-machine">
  
  <link name="base_link">
    <collision>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <mesh filename="package://3dmodeling-examples/models/urdf/meshes/washing-machine/main-body.stl" scale="0.001 0.001 0.001" />
      </geometry>
    </collision>
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <mesh filename="package://3dmodeling-examples/models/urdf/meshes/washing-machine/main-body.dae" />
      </geometry>
    </visual>
  </link>
  
  <link name="door">
    <collision>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <mesh filename="package://3dmodeling-examples/models/urdf/meshes/washing-machine/door.stl" scale="0.001 0.001 0.001" />
      </geometry>
    </collision>
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <mesh filename="package://3dmodeling-examples/models/urdf/meshes/washing-machine/door.dae" />
      </geometry>
    </visual>
  </link>
  
  <link name="tray">
    <collision>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <mesh filename="package://3dmodeling-examples/models/urdf/meshes/washing-machine/tray.stl" scale="0.001 0.001 0.001" />
      </geometry>
    </collision>
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <mesh filename="package://3dmodeling-examples/models/urdf/meshes/washing-machine/tray.dae" />
      </geometry>
    </visual>
  </link>
  
  <joint name="joint1" type="revolute">
    <parent link="base_link"/>
    <child  link="door"/>
    <origin xyz="0.30658 -0.258 0.67582" rpy="0 -0.1396 0"/>
    <axis xyz="0 0 1" />
    <limit effort="30" velocity="1.0" lower="-1.8326" upper="0.0" />
  </joint>
  
  <joint name="joint2" type="prismatic">
    <parent link="base_link"/>
    <child  link="tray"/>
    <origin xyz="0.0 -0.190 0.956" rpy="0 0 0"/>
    <axis xyz="1 0 0" />
    <limit effort="30" velocity="1.0" lower="0.0" upper="0.200" />
  </joint>
  
</robot>

washing-machine_links.urdf 内のそれぞれの要素について説明します.

  • 5〜48行 <link> 要素: リンクの定義 3つ ( base_link, door, tray )
    • <collision> 要素にメッシュに STL ファイルを使用し単位変換 [mm] → [m]
    • <visual> 要素に DAE メッシュファイルを使用
    • <origin> はリンク内のメッシュの配置なので今回は全てゼロ
  • 50〜56行 <joint> 要素: joint1
    • type で関節形式 revolve (=回転)を設定
    • <parent> 要素で関節を介する親リンク base_link を指定
    • <child> 要素で関節を介する子リンク door を指定
    • <origin> 要素で親子リンク間の相対座標
      • 位置の単位はメートル [m]
      • 姿勢角の正負に注意(座標軸に対して右ねじの法則)
    • <axis> 要素で revolve 関節の回転軸のリンク座標系での方向を設定
    • <limit> 要素
      • effort : 最大トルク – 今回はとりあえずの値
      • velocity : 最大角速度 – 今回はとりあえずの値
      • lower : 可動域下限 – 回転関節なので下限角度で単位はラジアン [rad]
      • upper : 可動域上限 – 回転関節なので上限角度で単位はラジアン [rad]
  • 58〜64行 <joint> 要素: joint2
    • type で関節形式 prismatic (=並進)を設定
    • <parent> 要素で関節を介する親リンク base_link を指定
    • <child> 要素で関節を介する子リンク tray を指定
    • <origin> 要素で親子リンク間の相対座標
    • <axis> 要素で prismatic 関節のリンク座標系での移動方向を設定
    • <limit> 要素
      • effort : 最大力 – 今回はとりあえずの値
      • velocity : 最大速度 – 今回はとりあえずの値
      • lower : 可動域下限 – 並進関節なので下限位置で単位はメートル [m]
      • upper : 可動域上限 – 並進関節なので上限位置で単位はメートル [m]

下記リンク先の ROS Wiki に URDF ファイルの作成方法のチュートリアルがありますので参考にしてください.

URDF モデルの確認

urdf_tutorialdisplay.launch で URDF モデル washing-machine_links.urdf の確認をします.(下記コマンド横スクロールで末尾まで表示)

$ roslaunch urdf_tutorial display.launch model:='$(find 3dmodeling-examples)/models/urdf/washing-machine_links.urdf'

URDF で <joint> 要素を定義して joint_state_publisher ウィンドウ内のスライドバーも有効になっているので関節を動かしてみます.

動画では表示メッシュの動きとともに TF も一緒に動いている様子が見られると思います.

今回の記事はここまでです.

著者:yamamoto.yosuke

Gazebo/MoveIt のための 3D モデリング(13)MoveIt の静モデルの作成

本シリーズ前回の記事 Gazebo/MoveIt のための 3D モデリング(12)Gazebo の静モデルの作成 ではエクスポートしたメッシュデータファイルを Gazebo の静モデルとしてモデルファイルに組み込んで表示する方法を紹介しました.

今回はエクスポートしたメッシュデータファイルを MoveIt の静モデルとしてモデルファイルに組み込んで表示する方法を紹介します.

今回紹介するのは次の2通りの方法です.メッシュを MoveIt GUI で読み込んで障害物とする方法とロボットモデル作成につながる方法の URDF モデルの作成とそれを確認表示する方法です.

  1. MoveIt 空間内の動作計画に対する障害物として STL ファイルまたは DAE ファイルを読み込んで設置
  2. URDF モデルの作成(→ ロボットリンクモデル作成へつながる)

MoveIt 内の障害物モデルとしてのメッシュ読込み

MoveIt には動作計画における障害物として STL ファイルや DAE ファイルをそのまま読み込んで MoveIt の動作計画空間内に配置する機能があります.

MoveIt の Motion Planning パネル内の Scene Objects タブを開いて, “Mesh from file” を選択します.

“Mesh from file” セレクタの右隣にあるプラスボタン [ + ] を押します.

(左図拡大は画像をクリック)

保存してある STL もしくは DAE ファイルを選択します.

ファイルを読み込むときに MoveIt の GUI インタフェースである RViz のメッセージウィンドウが開いて,ミリメートル単位で記述されているモデルをメートル単位に変換する旨の問いがなされるので [ Yes ] をクリックします.

読み込んだモデルをインタラクティブマーカや座標などを指定して意図した位置に設置し,左のチェックボックスをクリックすると設置リンクの選択を促されますので適宜選択して [ OK ] ボタンを押します.

次に [ Publish ] ボタンを押すと読み込んで設置したモデルが MoveIt 空間内で障害物として認識されます.

あとは [ Plan ] や [ Plan & Execute ] などで動作計画を実行するとその経路上に障害物があるとそれを避けたマニピュレーションの軌道が生成されます.

MoveIt モデル URDF ファイルの作成

MoveIt モデルの URDF ファイルの作成は下記リンク先の ROS Wiki に書かれています.
本記事ではそれらから MoveIt 静モデル作成に絞って説明します.

MoveIt モデルの作成にあたっては ROS パッケージを作成してその中にモデルの URDF ファイルを置くのが本記事の内容に続く応用も含めると一番簡便なのではないかと思います.

今回 ROS パッケージをつくるのが面倒なようでしたら下記リンク先リポジトリをクローンして利用してください.

3dmodeling-examples/
├── CMakeLists.txt
├── images
│   ├── front_view_win.png
│   ├── left_view_win.png
│   ├── top_view_win.png
│   ├── washing-machine_catalogue.pdf
│   └── washing-machine_catalogue.png
├── launch
│   ├── spawn-washingmachine.launch
│   └── world-washingmachine.launch
├── LICENSE
├── models
│   ├── gazebo_models
│   │   ├── washing-machine
│   │   │   ├── meshes
│   │   │   │   ├── base_link_blue-gray.stl
│   │   │   │   ├── base_link_dark-gray.stl
│   │   │   │   ├── base_link_gray-white.stl
│   │   │   │   ├── base_link_light-gray.stl
│   │   │   │   └── base_link.stl
│   │   │   ├── model.config
│   │   │   └── model.sdf
│   │   └── washing-machine-dae
│   │       ├── meshes
│   │       │   ├── base_link.dae
│   │       │   └── base_link.stl
│   │       ├── model.config
│   │       └── model.sdf
│   ├── urdf
│   │   ├── meshes
│   │   │   └── washing-machine
│   │   │       ├── base_link.dae
│   │   │       └── base_link.stl
│   │   └── washing-machine.urdf
│   └── washing-machine.3dm
├── package.xml
├── README.md
└── worlds
    └── washing-machine.world

本記事執筆時のサンプルモデルパッケージは右に示すような構成になっていますので参考にしてみてください.

この中の MoveIt URDF モデルに関連するフォルダ・ファイルがハイライトされた部分です.

meshes フォルダに base_link.dae と base_link.stl の2つのファイルが含まれていますが,これはサンプルのためですのでどちらか1つのファイルだけでも URDF モデルは作成できます.

今回の MoveIt 静モデルのサンプル URDF ファイル washing-machine.urdf の中身は次のようになっています.

<?xml version="1.0" ?>

<robot name="washing-machine">
  
  <link name="base_link">
    <collision>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <mesh filename="package://3dmodeling-examples/models/urdf/meshes/washing-machine/base_link.stl" scale="0.001 0.001 0.001" />
      </geometry>
    </collision>
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <mesh filename="package://3dmodeling-examples/models/urdf/meshes/washing-machine/base_link.dae" />
      </geometry>
    </visual>
  </link>
  
</robot>

URDF のデータ形式は XML で,モデル構成要素の linkcollisiongeometrymesh が記述されています.今回は静モデルですので link 要素は1つですがロボットのように関節が多いとリンク数にともなって link 要素およびそこに含まれる子要素も増えます.

ROS パッケージ化していることで ROS のファイルシステムが名前空間から package://3dmodeling-examples/... によって 3dmodeling-examples パッケージのディレクトリを自動解決できるようになっています.

collision メッシュの STL データは単位情報を持っていないので scale="0.001 0.001 0.001" で 0.001倍(=1/1000) 変換をして [mm] のデータを [m] に換算しています.

  • 注) 表示上コードの右の方に隠れていると思うので横スクロールで確認してください.

visual のメッシュは DAE ファイルを利用していて,DAE モデルは単位情報を持っていて読み込む側でスケール判断をするので scale は必要ありません.

URDF モデルファイルの RViz 表示

URDF モデルの確認には urdf_tutorial パッケージの display.launch を利用します.

urdf_tutorial は joint-state-publisher-gui パッケージをインストールすることで利用できるようになります.下記は ROS Melodic の場合のインストールコマンドですので他の ROS バージョンの場合は melodic の部分を noetic などに書き換えて実行してください.

$ sudo apt update
$ sudo apt install ros-melodic-joint-state-publisher-gui

ターミナルで ROS 環境の設定と urdf_tutorial の display.launch の起動を行います.

$ source ~/$PathToYourWorkspace/devel/setup.bash
$ roslaunch urdf_tutorial display.launch model:='$(find 3dmodeling-examples)/models/urdf/washing-machine.urdf'
  • 注)
    • $PathToYourWorkspace は各自の ROS ワークスペースへのパスを記述
    • Launch オプションの model:= には URDF ファイルパスを指定
      • 上記は 3dmodeling-examples パッケージ内のフォルダに washing-machine.urdf がある場合の例

正常に実行できると次の図のように洗濯機モデルが RViz 空間上に表示されます.

今回の単一リンクの正モデルの場合はリンク(フレーム)間の座標変換(tf)が無いので RViz 内の “Global Status: Warn / Fixed Frame No tf data. Actual error: Fixed Frame does not exist” と警告が出ますが問題はありません.
問題はありませんが気持ちの収まりが悪いようでしたらターミナルを追加で立ち上げて下記コマンドで例えば /world フレームから洗濯機モデルの /base_link フレームへの tf をパブリッシュすると警告が消えます.

$ rosrun tf2_ros static_transform_publisher 0 0 0 0 0 0 /world /base_link

今回の記事はここまでです.


本シリーズ次回の記事は洗濯機の URDF モデルにドアのヒンジなどの動く箇所を設定してより機械らしい(ロボットに近い)モデルにする様子を紹介する予定です.

著者:yamamoto.yosuke

パソコン1台で出来るロボットの学習素材集

ROS(ロス/Robot Operating System)の学習は実際にロボットがなくてもロボットのシミュレータが入手できるのでネットワークにつながるパソコンが1台あればできますので結構自習に向いています.この記事では ROS の学習を始める,進めるにあたり必要な情報がある Web へのリンクを中心に紹介します.

大まかに言うと次のインストールを行えば ROS の学習をスタートすることができます.

  • パソコンにオペレーティングシステムの Ubuntu Linux をインストール
  • Ubuntu Linux に ROS をインストール
  • ROS 上で動くロボットソフトウェアのインストール
    • → 紹介 ROS チュートリアル内にて

ROS と Ubuntu Linux のバージョンは後述する ROS 学習のチュートリアルが現時点では ROS Kinetic というバージョンを基本としているので下記の組み合わせをお勧めします.

  • Ubuntu 16.04
  • ROS Kinetic

ROS Melodic は ROS Kinetic と基本的な操作のほとんどは変わらないので ROS Kinetic で学習してから ROS Melodic に移行しても難なく可能です.

 

パソコンへの Ubuntu Linux のインストール

パソコンはどのようなものを使えば良いのか?については下記記事を参考にしてください.

ROS 導入ノートパソコン比較調査

ROS 導入ノートパソコン比較調査

最新高性能パソコンよりも数年型落ちや廉価の機種のほうが Ubuntu Linux をインストールしやすい傾向にあるように思います.

 

Ubuntu Linux への ROS のインストール

下記リンク先に各 ROS のバージョンにおけるインストール手順が書かれています.

また,Ubuntu のバージョンと ROS のバージョンには1対1の対応関係があるので組み合わせを気をつける必要があります.

 

ROS のチュートリアル

各チュートリアルを進めるとそれらの中で ROS シミュレータなどのインストールも行います.

TORK MoveIt チュートリアル

ROS の入門には TORK MoveIt チュートリアルをお薦めします.MoveIt は ROS のマニピュレーションロボット動作計画ソフトウェアです.このチュートリアルでは数種のロボットの ROS シミュレータのインストールや基本的な操作,プログラムでのロボット操作を学習することができます.TORK MoveIt チュートリアルではプログラミング言語に Python を用いていますが,プログラミングの経験がほとんどない人にもプログラムによるロボット操作の体験と学習ができるように構成しています.

ROS を初めて使う方に TORK MoveIt チュートリアルを学習したときのレポートも下記の記事に書いてもらっています.学習過程でいろいろと疑問をもった点などの体験を書いてもらいましたので参考にしてみてください.

初めてのROS(ROSチュートリアルを使って)

 

ROS-Industrial トレーニング(日本語版)

より発展的な ROS プログラミングを学習したい場合は ROS-Industrial トレーニングを行ってみるのも良いでしょう.この教材で取り上げられているプログラミング言語は主に C++ と Python です.C++ によるロボット制御や画像処理,3D ポイントクラウド処理などとそれらの組み合わせのプログラムの学習ができます.

ROS-Industrialのトレーニング教材を日本語訳しました!

 

ROS で質問したいことが出てきたら

ROS Discourse やチュートリアル,パッケージの GitHub Issues に質問を投稿してみてください.

 

入門的な実機マニピュレーションロボット

1台のパソコンだけ,シミュレータだけでなく入門的な実機マニピュレータを利用してみたいと思った方は入門的なマニピュレーションロボット2例の導入検証を行った記事を参考にしてみてください.

ROS 入門向けマニピュレータ導入検証